- -

Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Parra, Lorena es_ES
dc.contributor.author Viciano-Tudela, Sandra es_ES
dc.contributor.author Carrasco, David es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.date.accessioned 2024-11-18T19:06:31Z
dc.date.available 2024-11-18T19:06:31Z
dc.date.issued 2023-02 es_ES
dc.identifier.uri http://hdl.handle.net/10251/211942
dc.description.abstract [EN] The monitoring of the coastal environment is a crucial factor in ensuring its proper management. Nevertheless, existing monitoring technologies are limited due to their cost, temporal resolution, and maintenance needs. Therefore, limited data are available for coastal environments. In this paper, we present a low-cost multiparametric probe that can be deployed in coastal areas and integrated into a wireless sensor network to send data to a database. The multiparametric probe is composed of physical sensors capable of measuring water temperature, salinity, and total suspended solids (TSS). The node can store the data in an SD card or send them. A real-time clock is used to tag the data and to ensure data gathering every hour, putting the node in deep sleep mode in the meantime. The physical sensors for salinity and TSS are created for this probe and calibrated. The calibration results indicate that no effect of temperature is found for both sensors and no interference of salinity in the measuring of TSS or vice versa. The obtained calibration model for salinity is characterised by a correlation coefficient of 0.9 and a Mean Absolute Error (MAE) of 0.74 g/L. Meanwhile, different calibration models for TSS were obtained based on using different light wavelengths. The best case was using a simple regression model with blue light. The model is characterised by a correlation coefficient of 0.99 and an MAE of 12 mg/L. When both infrared and blue light are used to prevent the effect of different particle sizes, the determination coefficient of 0.98 and an MAE of 57 mg/L characterised the multiple regression model. es_ES
dc.description.sponsorship This work has been funded by the "Ministerio de Ciencia e Innovacion" through the Project PID2020-114467RR-C33/AEI/10.13039/501100011033, by "Ministerio de Agricultura, Pesca y Alimentacion" through the "proyectos de innovacion de interes general por grupos operativos de la Asociacion Europea para la Innovacion en materia de productividad y sostenibilidad agricolas (AEI-Agri)", project GO TECNOGAR, and by the "Ministerio de Economia y Competitividad" through the Project TED2021-131040B-C31. This study also forms part of the ThinkInAzul programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat Valenciana (THINKINAZUL/2021/002). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electromagnetic sensor es_ES
dc.subject Inductive coils es_ES
dc.subject Light abortion es_ES
dc.subject Optical sensor es_ES
dc.subject Physical sensor es_ES
dc.subject Salinity es_ES
dc.subject Total dissolved solids es_ES
dc.subject Water quality es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s23041871 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-114467RR-C33/ES/RED HETEROGENEA INTELIGENTE DE SENSORES INALAMBRICOS PARA MONITORIZAR Y ESTIMAR EL CONTENIDO DE RESINA DE CISTUS LADANIFER/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//THINKINAZUL%2F2021%2F002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica, Técnica y de Innovación 2021-2023/TED2021-131040B-C31/ES/EDGE COMPUTING INTELIGENTE EN REDES INALÁMBRICAS HETEROGÉNEAS DE SENSORES PARA LA AGRICULTURA DE PRECISIÓN Y LA DISEMINACIÓN DE LA AGRICULTURA DIGITAL (SOLUCION) es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//PRTR-C17.I1/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Parra, L.; Viciano-Tudela, S.; Carrasco, D.; Sendra, S.; Lloret, J. (2023). Low-Cost Microcontroller-Based Multiparametric Probe for Coastal Area Monitoring. Sensors. 23(4). https://doi.org/10.3390/s23041871 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s23041871 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 36850468 es_ES
dc.identifier.pmcid PMC9961687 es_ES
dc.relation.pasarela S\533110 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem