Mostrar el registro sencillo del ítem
dc.contributor.author | Forner, E. | es_ES |
dc.contributor.author | Ezenarro, J.J. | es_ES |
dc.contributor.author | Pérez-Montero, M. | es_ES |
dc.contributor.author | Vigués, N. | es_ES |
dc.contributor.author | Asensio-Grau, Andrea | es_ES |
dc.contributor.author | Andrés Grau, Ana María | es_ES |
dc.contributor.author | Mas, J. | es_ES |
dc.contributor.author | Baeza, M. | es_ES |
dc.contributor.author | Muñoz-Berbel, X. | es_ES |
dc.contributor.author | Villa, R. | es_ES |
dc.contributor.author | Gabriel, G. | es_ES |
dc.date.accessioned | 2024-11-19T19:11:18Z | |
dc.date.available | 2024-11-19T19:11:18Z | |
dc.date.issued | 2023-12-01 | es_ES |
dc.identifier.issn | 0039-9140 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/211981 | |
dc.description.abstract | [EN] There is an increasing demand on alternatives methods to animal testing. Numerous health parameters have been already studied using in vitro devices able to mimic the essential functions of the organs, being the real-time monitoring and response to stimuli their main limitations. Regarding the health of the gut, the short chain fatty acids, and particularly acetate, have emerged as key biomarkers to evaluate gut healthiness and disease development, although the number of acetate biosensors is still very low. This article presents a microbial biosensor based on fully biocompatible materials which is able to detect acetate in aerobic conditions in the range between 11 and 50 mM, and without compromising the viability and function of either bacteria (>90% viability) or mammalian cells (>80% viability). The detection mechanism is based on the metabolism of acetate by Escherichia coli bacteria immobilized on the transducer surface. Ferricyanide is used as a redox mediator to transfer electrons from the acetate metabolism in the bacterial cells to the transducer. High bacterial concentrations are immobilized in the transducer surface (109 cfu mL-1) by electrodeposition of conductive alginate hydrogels doped with reduced graphene oxide. The results show successful outcomes to exploit bacteria as a biosensing tool, based on the use of inkjet printed transducers, biocompatible materials and cell entrapment technologies. | es_ES |
dc.description.sponsorship | The authors acknowledge the support from the Ministerio de Ciencia Innovacion y Universidades (MICIU/FEDER, EU) , in Spain, through GUMICHIP (RTI2018-096786-B-I00) , GALILEI (PID2021-126253OB-C21) and CHIP4CELL projects (PID2021-127653NB-C21) and the support of the Generalitat de Catalunya to 2021SGR00495. The work has been performed by the ICTS "NANBIOSIS", more specifically by the U8 Unit of the CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN) at the IMB-CNM (CSIC) . This work also made use of theSpanish ICTS Network MICRONANOFABS partially supported by MEINCOM. We would like to thank the members of the GENOCOV research group from Universitat Autonoma, specifically Dr. D. Gabriel and PhD student M. Fachal, for their assistance in the liquid chroma-tography analysis presented in this work. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Talanta | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Acetate detection | es_ES |
dc.subject | Alginate hydrogel matrix | es_ES |
dc.subject | Electrochemical biosensor | es_ES |
dc.subject | Escherichia coli | es_ES |
dc.subject | Inkjet printed sensor | es_ES |
dc.subject | Reduced graphene oxide | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Electrochemical biosensor for aerobic acetate detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.talanta.2023.124882 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096786-B-I00/ES/GUT-MICROBIOTA-ON CHIP FOR PRECISION MEDICINE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-126253OB-C21/ES/DESARROLLO Y CARACTERIZACION DE BIORREACTORES BASADOS EN H2 Y HERRAMIENTAS DE MONITORIZACION AVANZADAS PARA LA VALORIZACION DE C Y S A PARTIR DE CORRIENTES LIQUIDAS Y GASEOSAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127653NB-C21/ES/INTEGRACION DE BIOSENSORES, MATRICES DE MICROELECTRODOS 3D Y CIRCUITOS FOTONICOS CON TECNOLOGIA COMPATIBLE CMOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GC//2021SGR00495/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Forner, E.; Ezenarro, J.; Pérez-Montero, M.; Vigués, N.; Asensio-Grau, A.; Andrés Grau, AM.; Mas, J.... (2023). Electrochemical biosensor for aerobic acetate detection. Talanta. 265. https://doi.org/10.1016/j.talanta.2023.124882 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.talanta.2023.124882 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 265 | es_ES |
dc.identifier.pmid | 37453394 | es_ES |
dc.relation.pasarela | S\497498 | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |