- -

Generative adversarial networks to detect intrusion and anomaly in IP flow-based networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generative adversarial networks to detect intrusion and anomaly in IP flow-based networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruffo, Vitor G. da Silva es_ES
dc.contributor.author Lent, Daniel M. Brandão es_ES
dc.contributor.author Carvalho, Luiz F. es_ES
dc.contributor.author Lloret, Jaime es_ES
dc.contributor.author Proença Jr, Mario Lemes es_ES
dc.date.accessioned 2024-11-19T19:11:55Z
dc.date.available 2024-11-19T19:11:55Z
dc.date.issued 2025-02 es_ES
dc.identifier.issn 0167-739X es_ES
dc.identifier.uri http://hdl.handle.net/10251/212004
dc.description.abstract [EN] Computer networks facilitate regular human tasks, providing services like data streaming, online shopping, and digital communications. These applications require more and more network capacity and dynamicity to accomplish their goals. The networks may be targeted by attacks and intrusions that compromise the applications that rely on them and lead to potential losses. We propose a semi-supervised systematic methodology for developing a detection system for traffic volume anomalies in IP flow-based networks. The system is implemented with a vanilla Generative Adversarial Network (GAN). The mitigation module is triggered whenever an anomaly is detected, automatically blocking the suspect IPs and restoring the correct network functioning. We implemented three versions of the proposed solution by incorporating Long Short-Term Memory (LSTM), 1D-Convolutional Neural Network (1D-CNN), and Temporal Convolutional Network (TCN) into the GAN internal structure. The experiments are conducted on three public benchmark datasets: Orion, CIC-DDoS2019, and CIC-IDS2017. The results show that the three considered deep learning models have distinct impacts on the GAN model and, consequently, on the overall system performance. The 1D-CNN-based GAN implementation is the best since it reasonably solves the mode collapse problem, has the most efficient computational complexity, and achieves competitive Matthews Correlation Coefficient scores for the anomaly detection task. Also, the mitigation module can drop most anomalous flows, blocking only a slight portion of legitimate traffic. For comparison with state-of-the-art models, we implemented 1D-CNN, LSTM, and TCN separately from the GAN. The generative networks show improved overall results in the considered performance metrics compared to the other models. es_ES
dc.description.sponsorship This work was supported by CAPES, Brazil, due to the conces-sion of scholarships and by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grant of Project 306397/2022-6. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Future Generation Computer Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Intrusion detection es_ES
dc.subject Attack mitigation es_ES
dc.subject Deep learning es_ES
dc.subject Generative adversarial network es_ES
dc.subject Software-defined network es_ES
dc.subject CIC-DDoS2019 es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Generative adversarial networks to detect intrusion and anomaly in IP flow-based networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.future.2024.107531 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//306397%2F2022-6/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Ruffo, VGDS.; Lent, DMB.; Carvalho, LF.; Lloret, J.; Proença Jr, ML. (2025). Generative adversarial networks to detect intrusion and anomaly in IP flow-based networks. Future Generation Computer Systems. 163. https://doi.org/10.1016/j.future.2024.107531 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.future.2024.107531 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 163 es_ES
dc.relation.pasarela S\531493 es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem