Mostrar el registro sencillo del ítem
dc.contributor.author | Conejero, J. Alberto | es_ES |
dc.contributor.author | Falcó, Antonio | es_ES |
dc.contributor.author | Mora-Jiménez, María | es_ES |
dc.date.accessioned | 2024-11-20T19:09:41Z | |
dc.date.available | 2024-11-20T19:09:41Z | |
dc.date.issued | 2023-07-15 | es_ES |
dc.identifier.issn | 1422-6383 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/212052 | |
dc.description.abstract | [EN] Many of today's problems require techniques that involve the solution of arbitrarily large systems Ax = b. A popular numerical approach is the so-called Greedy Rank-One Update Algorithm, based on a particular tensor decomposition. The numerical experiments support the fact that this algorithm converges especially fast when the matrix of the linear system is Laplacian-Like. These matrices that follow the tensor structure of the Laplacian operator are formed by sums of Kronecker product of matrices following a particular pattern. Moreover, this set of matrices is not only a linear subspace it is a Lie sub-algebra of a matrix Lie Algebra. In this paper, we characterize and give the main properties of this particular class of matrices. Moreover, the above results allow us to propose an algorithm to explicitly compute the orthogonal projection onto this subspace of a given square matrix A ¿ R^N×N . | es_ES |
dc.description.sponsorship | This work was supported by the Generalitat Valenciana and the European Social Found under Grant [number ACIF/2020/269)]; Ministerio de Ciencia, Innovaci¿on y Universidades under Grant [number RTI2018-093521-B-C32]; Universidad CEU Cardenal Herrera under Grant [number INDI22/15]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Results in Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Matrix decomposition | es_ES |
dc.subject | Laplacian-like matrix | es_ES |
dc.subject | High dimensional Linear System | es_ES |
dc.subject | Matrix Lie Algebra | es_ES |
dc.subject | Matrix Lie Group | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Structure and approximation properties of Laplacian-like matrices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00025-023-01960-0 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093521-B-C32/ES/GEOMETRIA Y TOPOLOGIA DE LOS MODELOS DE ORDEN REDUCIDO: APLICACIONES EN ARQUITECTURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GENERALITAT VALENCIANA//ACIF%2F2020%2F269//AYUDA PREDOCTORAL GVA-MORA JIMENEZ. PROYECTO: ANALISIS NUMERICO DE ALGORITMOS DE OPTIMIZACION BASADOS EN ESCOMPOSICIONES TENSORIALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//INDI22%2F15/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Conejero, JA.; Falcó, A.; Mora-Jiménez, M. (2023). Structure and approximation properties of Laplacian-like matrices. Results in Mathematics. 78(5):1-23. https://doi.org/10.1007/s00025-023-01960-0 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00025-023-01960-0 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 23 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 78 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\485241 | es_ES |
dc.contributor.funder | GENERALITAT VALENCIANA | es_ES |
dc.contributor.funder | Universidad CEU Cardenal Herrera | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.subject.ods | 04.- Garantizar una educación de calidad inclusiva y equitativa, y promover las oportunidades de aprendizaje permanente para todos | es_ES |