- -

Generalized hyperbolicity, stability and expansivity for operators on locally convex spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Generalized hyperbolicity, stability and expansivity for operators on locally convex spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernardes-Junior, Nilson Da Costa es_ES
dc.contributor.author Caraballo, Blas M. es_ES
dc.contributor.author Darji, Udayan B. es_ES
dc.contributor.author Fávaro, Vinicius V. es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.date.accessioned 2024-11-20T19:10:00Z
dc.date.available 2024-11-20T19:10:00Z
dc.date.issued 2025-01-15 es_ES
dc.identifier.issn 0022-1236 es_ES
dc.identifier.uri http://hdl.handle.net/10251/212062
dc.description.abstract [EN] We introduce and study the notions of (generalized) hyperbolicity, topological stability and (uniform) topological expansivity for operators on locally convex spaces. We prove that every generalized hyperbolic operator on a locally convex space has the finite shadowing property. Contrary to what happens in the Banach space setting, hyperbolic operators on Fr & eacute;chet spaces may fail to have the shadowing property, but we find additional conditions that ensure the validity of the shadowing property. Assuming that the space is sequentially complete, we prove that generalized hyperbolicity implies the strict periodic shadowing property, but we also show that the hypothesis of sequential completeness is essential. We show that operators with the periodic shadowing property on topological vector spaces have other interesting dynamical behaviors, including the fact that the restriction of such an operator to its chain recurrent set is topologically mixing and Devaney chaotic. We prove that topologically stable operators on locally convex spaces have the finite shadowing property and the strict periodic shadowing property. As a consequence, topologically stable operators on Banach spaces have the shadowing property. Moreover, we prove that generalized hyperbolicity implies topological stability for operators on Banach spaces. We prove that uniformly topologically expansive operators on locally convex spaces are neither Li-Yorke chaotic nor topologically transitive. Finally, we characterize the notion of topological expansivity for weighted shifts on Fr & eacute;chet sequence spaces. Several examples are provided. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// es_ES
dc.description.sponsorship The first author is beneficiary of a grant within the framework of the grants for the retraining, modality Maria Zambrano, in the Spanish university system (Spanish Ministry of Universities, financed by the European Union, NextGenerationEU) and was also partially supported by CNPq, Project #308238/2021-4, and by CAPES, Finance Code 001. The fifth and the first authors were partially supported by MCIN/AEI/10.13039/501100011033/FEDER, UE, Project PID2022-139449NB-I00. The fifth and the third authors were partially supported by Generalitat Valenciana, Project PROMETEU/2021/070. The fourth author was partially supported by FAPEMIG Grants RED-00133-21 and APQ-01853-23. Funding for open access charge: CRUE-Universitat Politecnica de Valencia. We would like to thank the referee whose careful review resulted in an improved presentation of the article. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Functional Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Generalized hyperbolicity es_ES
dc.subject Shadowing property es_ES
dc.subject Topological stability es_ES
dc.subject Expansivity es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Generalized hyperbolicity, stability and expansivity for operators on locally convex spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfa.2024.110696 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139449NB-I00/ES/DINAMICA DE OPERADORES Y ECUACIONES DE EVOLUCION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//308238%2F2021-4/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2021%2F070/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPEMIG//RED-00133-21/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPEMIG//APQ-01853-23/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Arquitectura - Escola Tècnica Superior d'Arquitectura es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bernardes-Junior, NDC.; Caraballo, BM.; Darji, UB.; Fávaro, VV.; Peris Manguillot, A. (2025). Generalized hyperbolicity, stability and expansivity for operators on locally convex spaces. Journal of Functional Analysis. 288(2). https://doi.org/10.1016/j.jfa.2024.110696 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jfa.2024.110696 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 288 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\531492 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de Minas Gerais es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem