- -

A supervised machine learning technique for combustion diagnosis using a vibration sensor signal

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A supervised machine learning technique for combustion diagnosis using a vibration sensor signal

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pla Moreno, Benjamín es_ES
dc.contributor.author De La Morena, Joaquín es_ES
dc.contributor.author Bares-Moreno, Pau es_ES
dc.contributor.author Aramburu-Orihuela, Alexandra es_ES
dc.date.accessioned 2024-11-21T19:10:51Z
dc.date.available 2024-11-21T19:10:51Z
dc.date.issued 2023-07-01 es_ES
dc.identifier.issn 0016-2361 es_ES
dc.identifier.uri http://hdl.handle.net/10251/212117
dc.description.abstract [EN] Machine learning (ML) techniques are increasingly spreading in the automotive area. The advantage of using data-based algorithms is evidenced in the study of complex nonlinear phenomena, such as engine combustion. An important aspect when using these techniques is selecting the appropriate features to feed the algorithms. Considering that an accurate estimation of the combustion parameters is necessary to maintain high efficiencies, the following study evaluates the potential of using the engine block vibration signal to estimate parameters, such as the indicated mean effective pressure (IMEP) or the combustion phasing and duration. The block vibration data has proven to contain information regarding engine combustion. Yet, adequate data processing is required to retrieve the features that best contribute to the ML model prediction. To this end, the methodology employs Singular Value Decomposition (SVD) to extract these features from the knock signal's spectrogram. Then, a correlation with the combustion parameters is made through an artificial neural network (ANN). Results yielded an improvement in the estimation accuracy of the combustion phasing parameters, compared with an ANN model using conventional engine control inputs (spark advance, fuel mass and engine speed). The mean absolute error decreased from 8% for the CA90 up to 25% for the CA50. Furthermore, this approach achieved better generalisation capabilities when unlearned conditions were added to a test set, showing an 80% decrease in the MAE with the proposed method. Measurements were performed on a spark ignition engine at different operating conditions. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Fuel es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Machine learning es_ES
dc.subject Feature extraction es_ES
dc.subject Vibration sensor es_ES
dc.subject Combustion modelling es_ES
dc.subject Engine performance es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title A supervised machine learning technique for combustion diagnosis using a vibration sensor signal es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.fuel.2023.127869 es_ES
dc.rights.accessRights Embargado es_ES
dc.date.embargoEndDate 2025-03-31 es_ES
dc.description.bibliographicCitation Pla Moreno, B.; De La Morena, J.; Bares-Moreno, P.; Aramburu-Orihuela, A. (2023). A supervised machine learning technique for combustion diagnosis using a vibration sensor signal. Fuel. 343. https://doi.org/10.1016/j.fuel.2023.127869 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.fuel.2023.127869 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 343 es_ES
dc.relation.pasarela S\498852 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem