- -

Double Cloak Area Approach for Preserving Privacy and Reliability of Crowdsourcing Data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Double Cloak Area Approach for Preserving Privacy and Reliability of Crowdsourcing Data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bahbouh, Nour Mahmoud es_ES
dc.contributor.author Alkhodre, Ahmad B. es_ES
dc.contributor.author Sendra, Sandra es_ES
dc.contributor.author Sen, Adnan Ahmed Abi es_ES
dc.contributor.author Alsaawy, Yazed es_ES
dc.contributor.author Benaida, Mohamed es_ES
dc.contributor.author Almoamari, Hani es_ES
dc.date.accessioned 2024-11-21T19:11:05Z
dc.date.available 2024-11-21T19:11:05Z
dc.date.issued 2024 es_ES
dc.identifier.uri http://hdl.handle.net/10251/212127
dc.description.abstract [EN] Crowdsourcing has emerged as a pivotal data source for diverse smart city applications, ranging from health and traffic to security and safety. However, the integration of users' location data in crowdsourced information poses a significant privacy challenge. Current privacy protection approaches of location-based services have become inadequate to face the evolving attackers' techniques and tools. Moreover, these protection methods ignored the issue of preserving the accuracy and reliability of data. This paper introduces a novel approach, termed Double Cloak Area (DCL-Ar), designed to effectively safeguard users' location privacy and ensure the reliability of data based on crowdsourcing. DCL-Ar differentiates by offering dual-layer protection for identity. The first layer involves users creating an initial cloak zone, while the second layer utilizes fog nodes to establish an extended cloak zone. Furthermore, the proposed method introduces three distinct scenarios for managing collaboration among fog nodes to select the optimal anonymizer and address the limitations of existing protection methods which are related to saving the reliability and the accuracy of data. DCL-Ar maintains maximum entropy, achieving complete uncertainty about user locations, thereby ensuring a high level of privacy protection. Through simulation and comparative analysis, the efficacy of the proposed approach is demonstrated where it provides a superior privacy level without significant performance. Experimental results demonstrate that DCL-Ar outperforms traditional methods, improving cache hit ratios and response times while reducing server query loads. Specifically, our approach reduces the number of queries sent to the service provider (SP) by up to 50% compared to existing methods and maintains a high cache hit ratio of nearly 100% over time. It further impacts on the traditional cloak-area and other protection approaches. es_ES
dc.description.sponsorship This work was supported by the Research Deanship of Islamic University of Madina under Grant 966. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Access es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Data privacy es_ES
dc.subject Crowdsourcing es_ES
dc.subject Privacy,Security es_ES
dc.subject Protection es_ES
dc.subject Reliability es_ES
dc.subject Smart cities es_ES
dc.subject Anonymizer es_ES
dc.subject Crowdsource es_ES
dc.subject Fog es_ES
dc.subject Privacy es_ES
dc.subject Smart city es_ES
dc.subject.classification INGENIERÍA TELEMÁTICA es_ES
dc.title Double Cloak Area Approach for Preserving Privacy and Reliability of Crowdsourcing Data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/ACCESS.2024.3420248 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Gandia - Escola Politècnica Superior de Gandia es_ES
dc.description.bibliographicCitation Bahbouh, NM.; Alkhodre, AB.; Sendra, S.; Sen, AAA.; Alsaawy, Y.; Benaida, M.; Almoamari, H. (2024). Double Cloak Area Approach for Preserving Privacy and Reliability of Crowdsourcing Data. IEEE Access. 12:100529-100543. https://doi.org/10.1109/ACCESS.2024.3420248 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1109/ACCESS.2024.3420248 es_ES
dc.description.upvformatpinicio 100529 es_ES
dc.description.upvformatpfin 100543 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.identifier.eissn 2169-3536 es_ES
dc.relation.pasarela S\524999 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem