Mostrar el registro sencillo del ítem
dc.contributor.author | Cabrera-Martínez, Abel | es_ES |
dc.contributor.author | Conchado Peiró, Andrea | es_ES |
dc.date.accessioned | 2024-11-21T19:11:31Z | |
dc.date.available | 2024-11-21T19:11:31Z | |
dc.date.issued | 2023-05-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/212146 | |
dc.description.abstract | [EN] A set D subset of V(G) is a super dominating set of a graphG if for every vertex u is an element of V(G)\, there exists a vertex v is an element of D such that N(v)\D = {u}. The super domination number ofG, denoted by gamma(sp)(G), is the minimum cardinality among all super dominating sets of G. In this article, we show that if G is a cactus graph with k(G) cycles, then gamma(sp)(G) <=gamma(2)(G) + k(G), where gamma(2)(G) is the 2-domination number of G. In addition, and as a consequence of the previous relationship, we show that if T is a tree of order at least three, then gamma(sp)(T) <= alpha(T) + s( T) - 1 and characterize the trees attaining this bound, where alpha(T) and s(T) are the independence number and the number of support vertices of T, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | De Gruyter Open | es_ES |
dc.relation.ispartof | Open Mathematics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Super domination number | es_ES |
dc.subject | 2-domination number | es_ES |
dc.subject | Cactus graphs | es_ES |
dc.subject | Trees | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Relating the super domination and 2-domination numbers in cactus graphs | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1515/math-2022-0583 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Cabrera-Martínez, A.; Conchado Peiró, A. (2023). Relating the super domination and 2-domination numbers in cactus graphs. Open Mathematics. 21(1). https://doi.org/10.1515/math-2022-0583 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1515/math-2022-0583 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2391-5455 | es_ES |
dc.relation.pasarela | S\521852 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
upv.costeAPC | 1000 | es_ES |