Mostrar el registro completo del ítem
Blanes Zamora, S.; Casas, F.; González, C.; Thalhammer, M. (2023). Efficient Splitting Methods Based on Modified Potentials: Numerical Integration of Linear Parabolic Problems and Imaginary Time Propagation of the Schrodinger Equation. Communications in Computational Physics. 33(4):937-961. https://doi.org/10.4208/cicp.OA-2022-0247
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/212320
Título: | Efficient Splitting Methods Based on Modified Potentials: Numerical Integration of Linear Parabolic Problems and Imaginary Time Propagation of the Schrodinger Equation | |
Autor: | Casas, Fernando González, Cesáreo Thalhammer, Mechthild | |
Fecha difusión: |
|
|
Resumen: |
[EN] We present a new family of fourth-order splitting methods with positive co-efficients especially tailored for the time integration of linear parabolic problems and, in particular, for the time dependent Schrodinger ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.4208/cicp.OA-2022-0247 | |
Código del Proyecto: |
|
|
Agradecimientos: |
Part of this work was developed during a research stay at the Wolfgang Pauli Institute Vienna; the authors are grateful to the director Norbert Mauser and the staff members for their support and hospitality. This work has ...[+]
|
|
Tipo: |
|