Mostrar el registro sencillo del ítem
dc.contributor.author | Kale, Sahil | es_ES |
dc.contributor.author | Khaire, Gautam | es_ES |
dc.contributor.author | Patankar, Jay | es_ES |
dc.date.accessioned | 2024-11-27T09:11:05Z | |
dc.date.available | 2024-11-27T09:11:05Z | |
dc.date.issued | 2024-11-15 | |
dc.identifier.uri | http://hdl.handle.net/10251/212340 | |
dc.description.abstract | [EN] Frequently Asked Questions (FAQs) refer to the most common inquiries about specific content. They serve as content comprehension aids by simplifying topics and enhancing understanding through succinct presentation of information. In this paper, we address FAQ generation as a well-defined Natural Language Processing task through the development of an end-to-end system leveraging text-to-text transformation models. We present a literature review covering traditional question-answering systems, highlighting their limitations when applied directly to the FAQ generation task. We propose a system capable of building FAQs from textual content tailored to specific domains, enhancing their accuracy and relevance. We utilise self-curated algorithms to obtain an optimal representation of information to be provided as input and also to rank the question-answer pairs to maximise human comprehension. Qualitative human evaluation showcases the generated FAQs as well-constructed and readable while also utilising domain-specific constructs to highlight domain-based nuances and jargon in the original content. | es_ES |
dc.description.sponsorship | The research for this paper was carried out for the ‘ROME - Automated FAQ Engine’ project initiated and funded by Stride.ai R&D Pvt Ltd, Bengaluru, India. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Journal of Computer-Assisted Linguistic Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Frequently Asked Questions | es_ES |
dc.subject | Natural Language Processing | es_ES |
dc.subject | Text-to-text Transformation | es_ES |
dc.subject | Transfer Learning | es_ES |
dc.subject | Natural Language Generation | es_ES |
dc.title | FAQ-Gen: An automated system to generate domain-specific FAQs to aid content comprehension | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/jclr.2024.21178 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Kale, S.; Khaire, G.; Patankar, J. (2024). FAQ-Gen: An automated system to generate domain-specific FAQs to aid content comprehension. Journal of Computer-Assisted Linguistic Research. 8:23-49. https://doi.org/10.4995/jclr.2024.21178 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/jclr.2024.21178 | es_ES |
dc.description.upvformatpinicio | 23 | es_ES |
dc.description.upvformatpfin | 49 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 2530-9455 | |
dc.relation.pasarela | OJS\21178 | es_ES |
dc.contributor.funder | Stride.AI | es_ES |