- -

A historical perspective of biomedical explainable AI research

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A historical perspective of biomedical explainable AI research

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Malinverno, Luca es_ES
dc.contributor.author Barros, Vesna es_ES
dc.contributor.author Ghisoni, Francesco es_ES
dc.contributor.author Visonà, Giovanni es_ES
dc.contributor.author Kern, Roman es_ES
dc.contributor.author Nickel, Philip J. es_ES
dc.contributor.author Ventura, Barbara Elvira es_ES
dc.contributor.author Simic, Ilija es_ES
dc.contributor.author Stryeck, Sarah es_ES
dc.contributor.author Manni, Francesca es_ES
dc.contributor.author Ferri Ramírez, César es_ES
dc.contributor.author Jean-Quartier, Claire es_ES
dc.contributor.author Genga, Laura es_ES
dc.contributor.author Schweikert, Gabriele es_ES
dc.contributor.author Lovric, Mario es_ES
dc.date.accessioned 2024-11-28T19:05:23Z
dc.date.available 2024-11-28T19:05:23Z
dc.date.issued 2023-09-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/212440
dc.description.abstract [EN] The black-box nature of most artificial intelligence (AI) models encourages the development of explainability methods to engender trust into the AI decision-making process. Such methods can be broadly categorized into two main types: post hoc explanations and inherently interpretable algorithms. We aimed at analyzing the possible associations between COVID-19 and the push of explainable AI (XAI) to the forefront of biomed-ical research. We automatically extracted from the PubMed database biomedical XAI studies related to con-cepts of causality or explainability and manually labeled 1,603 papers with respect to XAI categories. To compare the trends pre-and post-COVID-19, we fit a change point detection model and evaluated significant changes in publication rates. We show that the advent of COVID-19 in the beginning of 2020 could be the driving factor behind an increased focus concerning XAI, playing a crucial role in accelerating an already evolving trend. Finally, we present a discussion with future societal use and impact of XAI technologies and potential future directions for those who pursue fostering clinical trust with interpretable machine learning models. es_ES
dc.description.sponsorship We are extremely grateful for Prof. Chris Holmes for his critical reading and valuable comments. We acknowledge the funding received from the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sk1odowska-Curie Grant agreement no. 813533-MSCA-ITN-2018. I.S. was funded by the "DDAI" COMET Module within the COMET - Competence Centers for Excellent Technologies Programme, funded by the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry for Digital and Economic Affairs (BMDW), the Austrian Research Promotion Agency (FFG), the Province of Styria (SFG), and partners from industry and academia. The COMET Program is managed by FFG. Finally, we acknowledge the Big Data Value Association (BDVA), Brussels, Belgium. es_ES
dc.language Inglés es_ES
dc.publisher Cell Press es_ES
dc.relation.ispartof Patterns es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Artificial intelligence (AI) es_ES
dc.subject Black-box es_ES
dc.subject Explainability es_ES
dc.subject Trust es_ES
dc.subject Decision-making process es_ES
dc.subject Post hoc explanations es_ES
dc.subject Inherently interpretable algorithms es_ES
dc.subject COVID-19 es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title A historical perspective of biomedical explainable AI research es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.patter.2023.100830 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/813533/EU/Machine Learning Frontiers in Precision Medicine/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Malinverno, L.; Barros, V.; Ghisoni, F.; Visonà, G.; Kern, R.; Nickel, PJ.; Ventura, BE.... (2023). A historical perspective of biomedical explainable AI research. Patterns. 4(9). https://doi.org/10.1016/j.patter.2023.100830 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.patter.2023.100830 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2666-3899 es_ES
dc.identifier.pmid 37720333 es_ES
dc.identifier.pmcid PMC10500028 es_ES
dc.relation.pasarela S\519064 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Österreichische Forschungsförderungsgesellschaft es_ES
dc.contributor.funder Bundesministerium für Verkehr, Innovation und Technologie, Austria es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem