Mostrar el registro sencillo del ítem
dc.contributor.author | López-Pérez, Esther | es_ES |
dc.contributor.author | Sanchis Ibor, Carles | es_ES |
dc.contributor.author | Jiménez Bello, Miguel Angel | es_ES |
dc.contributor.author | Pulido-Velazquez, M. | es_ES |
dc.date.accessioned | 2024-12-18T09:58:32Z | |
dc.date.available | 2024-12-18T09:58:32Z | |
dc.date.issued | 2024-09-01 | es_ES |
dc.identifier.issn | 0378-3774 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/213035 | |
dc.description.abstract | [EN] Effective and sustainable management of aquifers in regions with intensive groundwater use for irrigation requirements accurate mapping or irrigated areas to control water resource exploitation and plan rational water usage. This study proposes a cost-effective methodology based on satellite images to identify irrigated areas utilizing surface water and groundwater resources. The methodology integrates soil moisture estimations, environmental variables, and variables that affect to retention of water soil, that join a ground truth dataset, to estimate irrigated surface through a machine learning method during the irrigation period of 2021. Spectral data derived parameters and crop morphology, along with official data on agricultural parcels, were utilized to define vineyard irrigation areas at the plot scale within the Requena-Utiel aquifer in Eastern Spain. A machine learning classification technique was applied,yielding a remarkable precision of 91.8 % when compared to ground truth data.Discrepancies between the remote sensing-based irrigated area estimation and official data are highlighted. This study represents the most accurate plot-scale irrigation mapping of woody crops in the region to date. | es_ES |
dc.description.sponsorship | This work was funded by the eGROUNDWATER Project (GAn.1921) as part of the PRIMA programme supported by the European Union's Horizon2020 Research and Innovation Programme. We thank Utiel-Requena Designation of Origin for providing crop information. We also thank two anonymous reviewers for the constructive comments that greatly improved the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Agricultural Water Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Irrigated area | es_ES |
dc.subject | Machine Learning | es_ES |
dc.subject | Remote sensing | es_ES |
dc.subject | Soil moisture | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Mapping of irrigated vineyard areas through the use of machine learning techniques and remote sensing | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.agwat.2024.108988 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.description.bibliographicCitation | López-Pérez, E.; Sanchis Ibor, C.; Jiménez Bello, MA.; Pulido-Velazquez, M. (2024). Mapping of irrigated vineyard areas through the use of machine learning techniques and remote sensing. Agricultural Water Management. 302. https://doi.org/10.1016/j.agwat.2024.108988 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.agwat.2024.108988 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 302 | es_ES |
dc.relation.pasarela | S\524958 | es_ES |
dc.contributor.funder | FUNDACION PRIMA | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |