- -

Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí, Pau es_ES
dc.contributor.author López-Urrea, Ramón es_ES
dc.contributor.author Mancha, Luis A. es_ES
dc.contributor.author González Altozano, Pablo es_ES
dc.contributor.author Román, Armand es_ES
dc.date.accessioned 2024-12-18T09:58:38Z
dc.date.available 2024-12-18T09:58:38Z
dc.date.issued 2024-07-01 es_ES
dc.identifier.issn 0378-3774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/213036
dc.description.abstract [EN] Models relying on limited inputs are very valuable for estimating reference evapotranspiration, and subsequently irrigation doses, but their accuracy can be very dependent from calibration. This study assessed three versions of the Hargreaves-Samani (HS) and the FAO Penman-Monteith (PM) equations to estimate reference evapotrans piration (ETo), relying respectively on three input combinations. Further the six models were adjusted each using different time windows for calculating the calibrating constants, namely global, annual, monthly, fortnightly, and weekly constants, while all the models were calibrated and tested using calculated and lysimeter bench marks. The models relying on mean air temperature and solar radiation tended to be more accurate than those relying on mean air temperature and relative humidity, while these tended to be more accurate than those relying on air temperature difference, but there might be intra annual exceptions according to the monthly in dicators. The errors of the PM estimations were just slightly higher than those of the corresponding HS esti mations. The accuracy improvement in the calibrated versions was higher the shorter the time window used for averaging the calibrating parameters. Thus, the application of monthly or, at least, seasonal calibrating constant might be recommended for a suitable correction of the bias. During the year, the estimations presented markedly lower errors and lower differences within models during the summer. The error decrease in the calibrated versions was more marked during the winter. The assessment relying on lysimeter benchmarks provided similar qualitative patterns than the assessment relying on calculated benchmarks, but the corresponding error ranges were higher. Finally, 6 examples were presented for visualizing the effect of the method used to estimate ETo on the corresponding resulting average annual crop water requirements. If irrigation scheduling is based on a soil water balance using crop evapotranspiration estimates, at least, a monthly bias assessment of the ETo estimates in combination with the crop cycle lengths and dates might contribute to infer if crop water requirement infraestimation trends are identified during crop sensitive stages to water deficit. es_ES
dc.description.sponsorship This research has been funded by the Agencia Estatal de Investigacion with FEDER (grant numbers PID2021-123305OB-C31 and PID2020-113498RB-C21), and NextGenerationEU (TED2021-130405BI00) co-financing. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Agricultural Water Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject FAO 56 methodology es_ES
dc.subject FAO Penman-Monteith es_ES
dc.subject Hargreaves-Samani es_ES
dc.subject Meteorological variables es_ES
dc.subject Large weighing lysimeter es_ES
dc.subject Grass reference surface es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.agwat.2024.108903 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113498RB-C21/ES/VIGILANCIA DE LAS EXTRACCIONES DE AGUA NO AUTORIZADAS UTILIZANDO DATOS OPTICOS Y TERMICOS DE TELEDETECCION PARA LA CONTABILIDAD Y EL ESTRES HIDRICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123305OB-C31/ES/MEJORA DE LA EFICIENCIA EN EL USO DEL AGUA DE LA VID DESCIFRANDO LAS RESPUESTAS DEL VIÑEDO AL MATERIAL VEGETAL EMPLEADO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//TED2021-130405B-I00/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Martí, P.; López-Urrea, R.; Mancha, LA.; González Altozano, P.; Román, A. (2024). Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks. Agricultural Water Management. 300. https://doi.org/10.1016/j.agwat.2024.108903 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.agwat.2024.108903 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 300 es_ES
dc.relation.pasarela S\536888 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder AQLARA CICLO INTEGRAL DEL AGUA, S.A. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem