- -

Breast mass regions classification from mammograms using convolutional neuralnetworks and transfer learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Breast mass regions classification from mammograms using convolutional neuralnetworks and transfer learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimenez-Gaona, Yuliana es_ES
dc.contributor.author Rodríguez-Álvarez, M.J. es_ES
dc.contributor.author Carrión, Diana es_ES
dc.contributor.author Castillo-Malla, Darwin es_ES
dc.contributor.author Lakshminarayanan, Vasudevan es_ES
dc.date.accessioned 2024-12-23T14:23:17Z
dc.date.available 2024-12-23T14:23:17Z
dc.date.issued 2024-02 es_ES
dc.identifier.issn 0950-0340 es_ES
dc.identifier.uri http://hdl.handle.net/10251/213194
dc.description.abstract [EN] This study introduces a novel approach aimed at enhancing the quality of digital mammography images through pre-processing techniques, to improve breast cancer detection accuracy. The primary objective is to enhance image resolution, thus leading to more precise breast tissue segmentation and subsequent classification utilizing convolutional neural networks (CNNs). Three recognized public mammography databases: CBIS-DDSM, Mini-MIAS, and Inbreast were used as pre-processing data. Our statistical findings revealed that the EDSR method (PSNR = 39.05 dB/ SSIM = 0.90) consistently outperformed the visual quality of images when compared to SR-RDN (PSNR = 32.68 dB/SSIM = 0.82). Similarly, UNet demonstrated superior performance over SegNet, boasting an average Intersection over Union (IoU) of 0.862, an average Dice coefficient of 0.991, and an accuracy rate of 0.947 in Region of Interest (RoI) segmentation results. In conclusion, the ResNet model contributed to enhanced accuracy compared to conventional machine learning algorithms. However, it did not surpass state-of-the-art deep CNN-based classifiers, achieving an accuracy rate of 75%. es_ES
dc.description.sponsorship This project has received co-financed from the Spanish Government Grant PID2019-107790RB-C22, Software development for a continuous PET crystal systems applied to breast cancer . es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Modern Optics es_ES
dc.relation.uri https://opticapublishing.figshare.com/s/d3fb2f7112f41c58fa07?file=39545926
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Breast cancer es_ES
dc.subject Classification es_ES
dc.subject Convolutional neural network es_ES
dc.subject Mammography images es_ES
dc.subject Segmentation es_ES
dc.subject Super resolution es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Breast mass regions classification from mammograms using convolutional neuralnetworks and transfer learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/09500340.2024.2313724 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Jimenez-Gaona, Y.; Rodríguez-Álvarez, M.; Carrión, D.; Castillo-Malla, D.; Lakshminarayanan, V. (2024). Breast mass regions classification from mammograms using convolutional neuralnetworks and transfer learning. Journal of Modern Optics. 70(10):645-660. https://doi.org/10.1080/09500340.2024.2313724 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/09500340.2024.2313724 es_ES
dc.description.upvformatpinicio 645 es_ES
dc.description.upvformatpfin 660 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 70 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\508461 es_ES
dc.contributor.funder AGENCIA ESTATAL DE INVESTIGACION es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem