Mostrar el registro sencillo del ítem
dc.contributor.author | Jimenez-Gaona, Yuliana | es_ES |
dc.contributor.author | Rodríguez-Álvarez, M.J. | es_ES |
dc.contributor.author | Carrión, Diana | es_ES |
dc.contributor.author | Castillo-Malla, Darwin | es_ES |
dc.contributor.author | Lakshminarayanan, Vasudevan | es_ES |
dc.date.accessioned | 2024-12-23T14:23:17Z | |
dc.date.available | 2024-12-23T14:23:17Z | |
dc.date.issued | 2024-02 | es_ES |
dc.identifier.issn | 0950-0340 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/213194 | |
dc.description.abstract | [EN] This study introduces a novel approach aimed at enhancing the quality of digital mammography images through pre-processing techniques, to improve breast cancer detection accuracy. The primary objective is to enhance image resolution, thus leading to more precise breast tissue segmentation and subsequent classification utilizing convolutional neural networks (CNNs). Three recognized public mammography databases: CBIS-DDSM, Mini-MIAS, and Inbreast were used as pre-processing data. Our statistical findings revealed that the EDSR method (PSNR = 39.05 dB/ SSIM = 0.90) consistently outperformed the visual quality of images when compared to SR-RDN (PSNR = 32.68 dB/SSIM = 0.82). Similarly, UNet demonstrated superior performance over SegNet, boasting an average Intersection over Union (IoU) of 0.862, an average Dice coefficient of 0.991, and an accuracy rate of 0.947 in Region of Interest (RoI) segmentation results. In conclusion, the ResNet model contributed to enhanced accuracy compared to conventional machine learning algorithms. However, it did not surpass state-of-the-art deep CNN-based classifiers, achieving an accuracy rate of 75%. | es_ES |
dc.description.sponsorship | This project has received co-financed from the Spanish Government Grant PID2019-107790RB-C22, Software development for a continuous PET crystal systems applied to breast cancer . | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Modern Optics | es_ES |
dc.relation.uri | https://opticapublishing.figshare.com/s/d3fb2f7112f41c58fa07?file=39545926 | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Breast cancer | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Convolutional neural network | es_ES |
dc.subject | Mammography images | es_ES |
dc.subject | Segmentation | es_ES |
dc.subject | Super resolution | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Breast mass regions classification from mammograms using convolutional neuralnetworks and transfer learning | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/09500340.2024.2313724 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107790RB-C22/ES/DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Jimenez-Gaona, Y.; Rodríguez-Álvarez, M.; Carrión, D.; Castillo-Malla, D.; Lakshminarayanan, V. (2024). Breast mass regions classification from mammograms using convolutional neuralnetworks and transfer learning. Journal of Modern Optics. 70(10):645-660. https://doi.org/10.1080/09500340.2024.2313724 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/09500340.2024.2313724 | es_ES |
dc.description.upvformatpinicio | 645 | es_ES |
dc.description.upvformatpfin | 660 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 70 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\508461 | es_ES |
dc.contributor.funder | AGENCIA ESTATAL DE INVESTIGACION | es_ES |