- -

BRANET: A mobil application for breast image classification based on deep learning algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BRANET: A mobil application for breast image classification based on deep learning algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jimenez-Gaona, Yuliana es_ES
dc.contributor.author Rodríguez-Álvarez, M.J. es_ES
dc.contributor.author Castillo-Malla, Darwin Patricio es_ES
dc.contributor.author García, Santiago es_ES
dc.contributor.author Carrión, Diana es_ES
dc.contributor.author Corral, Patricio es_ES
dc.contributor.author Lakshminarayanan, Vasudevan es_ES
dc.date.accessioned 2024-12-23T19:05:32Z
dc.date.available 2024-12-23T19:05:32Z
dc.date.issued 2024-05-02 es_ES
dc.identifier.issn 0140-0118 es_ES
dc.identifier.uri http://hdl.handle.net/10251/213206
dc.description.abstract [EN] Mobile health apps are widely used for breast cancer detection using artifcial intelligence algorithms, providing radiologists with second opinions and reducing false diagnoses. This study aims to develop an open-source mobile app named "BraNet" for 2D breast imaging segmentation and classifcation using deep learning algorithms. During the phase of-line, an SNGAN model was previously trained for synthetic image generation, and subsequently, these images were used to pre-trained SAM and ResNet18 segmentation and classifcation models. During phase online, the BraNet app was developed using the react native framework, ofering a modular deep-learning pipeline for mammography (DM) and ultrasound (US) breast imaging classifcation. This application operates on a client-server architecture and was implemented in Python for iOS and Android devices. Then, two diagnostic radiologists were given a reading test of 290 total original RoI images to assign the perceived breast tissue type. The reader's agreement was assessed using the kappa coefcient. The BraNet App Mobil exhibited the highest accuracy in benign and malignant US images (94.7%/93.6%) classifcation compared to DM during training I (80.9%/76.9%) and training II (73.7/72.3%). The information contrasts with radiological experts¿ accuracy, with DM classifcation being 29%, concerning US 70% for both readers, because they achieved a higher accuracy in US ROI classifcation than DM images. The kappa value indicates a fair agreement (0.3) for DM images and moderate agreement (0.4) for US images in both readers. It means that not only the amount of data is essential in training deep learning algorithms. Also, it is vital to consider the variety of abnormalities, especially in the mammography data, where several BI-RADS categories are present (microcalcifcations, nodules, mass, asymmetry, and dense breasts) and can afect the API accuracy model. es_ES
dc.description.sponsorship Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding was obtained from the Universidad Técnica Particular de Loja, PROY_INV_QU_2022_3576. CRUE UNIVERSITAT POLITÈCNICA DE VALÈNCIA. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Medical & Biological Engineering & Computing es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Breast cancer es_ES
dc.subject Mobil app es_ES
dc.subject Deep learning es_ES
dc.subject Ultrasound es_ES
dc.subject Mammography es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title BRANET: A mobil application for breast image classification based on deep learning algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11517-024-03084-1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PID2019-107790RB-C22//DESARROLLO DEL SOFTWARE PARA UN SISTEMA PET DE CRISTAL CONTINUO APLICADO AL CANCER DE MAMA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UTPL//PROY_INV_QU_2022_3576/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.description.bibliographicCitation Jimenez-Gaona, Y.; Rodríguez-Álvarez, M.; Castillo-Malla, DP.; García, S.; Carrión, D.; Corral, P.; Lakshminarayanan, V. (2024). BRANET: A mobil application for breast image classification based on deep learning algorithms. Medical & Biological Engineering & Computing. 62:1-20. https://doi.org/10.1007/s11517-024-03084-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11517-024-03084-1 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 62 es_ES
dc.identifier.pmid 38693328 es_ES
dc.identifier.pmcid PMC11330402 es_ES
dc.relation.pasarela S\513661 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Universidad Técnica Particular de Loja es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem