- -

Leveraging deep learning segmentation techniques and connected component analysis to automate high-level cost estimates of facade retrofits using 2D images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.

Leveraging deep learning segmentation techniques and connected component analysis to automate high-level cost estimates of facade retrofits using 2D images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escalada, María es_ES
dc.date.accessioned 2025-01-14T12:01:41Z
dc.date.available 2025-01-14T12:01:41Z
dc.date.issued 2024-11-14
dc.identifier.uri http://hdl.handle.net/10251/213753
dc.description.abstract [EN] Deep learning semantic segmentation techniques applied to 2D facade images hold a great promise in several domains that go far beyond model generation, mainly if the data used are front-parallel or orthonormal photographs. However, effective applications in the field of built heritage have not been adequately explored, largely due to the absence of multidisciplinary teams that include architecture professionals as early as the dataset creation stage. The aim of this research is to introduce a holistic view in order to demonstrate the practical usefulness of state-of-the-art segmentation models to automate high-level cost estimates of urbanscale residential building facade rehabilitations when combined with a connected component analysis. To achieve this, a scalable bottom-up approach is formulated in five simple phases, encompassing both data science and architecture expertise. This strategy seeks to improve the accuracy of analyses at early stages when limited information on constructions is available and there is a significant cost uncertainty, and therefore to optimise the strategies used by construction stakeholders involved in economic feasibility studiesand decision-making processes. es_ES
dc.description.sponsorship This PhD research is supported by the PIF contract from the University of the Basque Country (UPV/EHU) and the Higher Technical School of Architecture of San Sebastián. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof VITRUVIO - International Journal of Architectural Technology and Sustainability es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Deep learning es_ES
dc.subject Semantic segmentation es_ES
dc.subject Connected component analysis es_ES
dc.subject High-level cost estimates es_ES
dc.subject Facade rehabilitations es_ES
dc.title Leveraging deep learning segmentation techniques and connected component analysis to automate high-level cost estimates of facade retrofits using 2D images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/vitruvio-ijats.2024.22421
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Escalada, M. (2024). Leveraging deep learning segmentation techniques and connected component analysis to automate high-level cost estimates of facade retrofits using 2D images. VITRUVIO - International Journal of Architectural Technology and Sustainability. 9(2). https://doi.org/10.4995/vitruvio-ijats.2024.22421 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/vitruvio-ijats.2024.22421 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2444-9091
dc.relation.pasarela OJS\22421 es_ES
dc.contributor.funder Universidad del País Vasco/Euskal Herriko Unibertsitatea es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem