- -

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Al-Mahmud, Sharif es_ES
dc.contributor.author Cano, Jose Alejandro es_ES
dc.contributor.author Campo, Emiro Antonio es_ES
dc.contributor.author Weyers, Stephan es_ES
dc.date.accessioned 2025-02-05T13:17:14Z
dc.date.available 2025-02-05T13:17:14Z
dc.date.issued 2025-01-31
dc.identifier.uri http://hdl.handle.net/10251/214284
dc.description.abstract [EN] Cut Order Planning (COP) optimizes production costs in the apparel industry by efficiently cutting fabric for garments. This complex process involves challenging decision-making due to order specifications and production constraints. This article introduces novel approaches to the COP problem using heuristics, metaheuristic algorithms, and commercial solvers. Two different solution approaches are proposed and tested through experimentation and analysis, demonstrating their effectiveness in real-world scenarios. The first approach uses conventional metaheuristic algorithms, while the second transforms the nonlinear COP mathematical model into a Mixed Integer Linear Programming (MILP) problem and uses commercial solvers for solution. Modifications to existing heuristics, combined with tournament selection in genetic algorithms (GA), improve solution quality and efficiency. Comparative analysis shows that Particle Swarm Optimization (PSO) outperforms GA, especially for small and medium-sized problems. Cost and runtime evaluations confirm the efficiency and practical applicability of the proposed algorithms, with commercial solvers, delivering superior solutions in shorter computation times. This study suggests the use of solvers for the COP problem, especially for smaller orders, and reserves PSO and GA for larger orders where commercial solvers may not provide a solution. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject COP es_ES
dc.subject Cut order planning es_ES
dc.subject Heuristics es_ES
dc.subject Metaheuristics es_ES
dc.subject MILP es_ES
dc.subject Garment manufacturing es_ES
dc.title Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2025.22196
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Al-Mahmud, S.; Cano, JA.; Campo, EA.; Weyers, S. (2025). Optimizing cut order planning: A comparative study of heuristics, metaheuristics, and MILP algorithms. International Journal of Production Management and Engineering. 13(1):1-26. https://doi.org/10.4995/ijpme.2025.22196 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2025.22196 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\22196 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem