Desde el lunes 3 y hasta el jueves 20 de marzo, RiuNet funcionará en modo de solo lectura a causa de su actualización a una nueva versión.
Mostrar el registro completo del ítem
Serrano-Ruiz, JC.; Mula, J.; Poler, R. (2024). Job shop smart manufacturing scheduling by deep reinforcement learning. Journal of Industrial Information Integration. 38:1-27. https://doi.org/10.1016/j.jii.2024.100582
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/214804
Título: | Job shop smart manufacturing scheduling by deep reinforcement learning | |
Autor: | ||
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Smart manufacturing scheduling (SMS) requires a high degree of flexibility to successfully cope with changes in operational decision level planning processes in today's production environments, which are usually subject ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | https://doi.org/10.1016/j.jii.2024.100582 | |
Coste APC: |
|
|
Código del Proyecto: |
|
|
Agradecimientos: |
The research leading to these results received funding from the following projects: "Industrial Production and Logistics Optimization in Industry 4.0″ (i4OPT) (Ref. PROMETEO/2021/065) granted by the
Valencian Regional ...[+]
|
|
Tipo: |
|