Resumen:
|
[ES] Un modelo de estimación de rendimiento predice el coste de un algoritmo a partir de una serie de parámetros. En el
campo de la computación paralela en CPU se dispone de múltiples modelos para realizar esta estimación ...[+]
[ES] Un modelo de estimación de rendimiento predice el coste de un algoritmo a partir de una serie de parámetros. En el
campo de la computación paralela en CPU se dispone de múltiples modelos para realizar esta estimación de manera
teórica, pero si el algoritmo se ejecuta sobre una GPU solo existen unos pocos que presentan importantes carencias.
El objetivo de este trabajo es cubrir de alguna manera este vacío, proporcionando un modelo de alto nivel que
permita estimar costes de una manera sencilla y que dé soporte para la evaluación de algoritmos ejecutados sobre
arquitecturas heterogéneas. Para ello, se comparan varios modelos de GPU ya existentes, y el que exhibe un mejor
rendimiento es tomado como base y se le añaden nuevas consideraciones para mejorar las estimaciones.
Finalmente, se implementan varios algoritmos para validar las estimaciones del nuevo modelo, comparándolo con
los resultados experimentales y con los obtenidos con el modelo de referencia. Dichos algoritmos son la reducción,
el producto matriz-vector y la factorización de Cholesky.
[-]
[EN] A performance model predicts the cost of an algorithm, based on a set of parameters. In the field of parallel CPU
computing there are many models which allow to perform a theoretical estimation, but just a few of ...[+]
[EN] A performance model predicts the cost of an algorithm, based on a set of parameters. In the field of parallel CPU
computing there are many models which allow to perform a theoretical estimation, but just a few of them exist for
algorithms executed in GPU, which present important limitations. This work aims to fulfill this void, providing a
high-level model which allows to estimate cost easily and supports evaluating algorithms executed in
heterogeneous architectures. In order achieve this goal, previous GPU models are compared using some simple
algorithms, and the model which exhibits the best performance is taken as a basis and new considerations are
included in order to improve its estimations.
Finally, some algorithms are implemented in order to validate the new model estimations, compared both with
experimental results and the ones got with the base model. These algorithms are reduction, matrix-vector product
and Cholesky's decomposition.
[-]
|