Mostrar el registro sencillo del ítem
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Hueso Pagoaga, José Luís | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2013-04-11T09:44:18Z | |
dc.date.available | 2013-04-11T09:44:18Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.uri | http://hdl.handle.net/10251/27791 | |
dc.description.abstract | A family of derivative-free methods of seventh-order convergence for solving nonlinear equations is suggested. In the proposed methods, several linear combinations of divided differences are used in order to get a good estimation of the derivative of the given function at the different steps of the iteration. The efficiency indices of the members of this family are equal to 1.6266. Also, numerical examples are used to show the performance of the presented methods, on smooth and nonsmooth equations, and to compare with other derivative-free methods, including some optimal fourth-order ones, in the sense of Kung-Traubs conjecture. Copyright 2012 Alicia Cordero et al. | es_ES |
dc.description.sponsorship | The authors would like to thank the referees for their valuable comments and for their suggestions to improve the readability of the paper. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-06-2010-2285. | en_EN |
dc.format.extent | 15 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Publishing Corporation | |
dc.relation.ispartof | Abstract and Applied Analysis | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | A family of derivative-free methods with high order of convergence and its application to nonsmooth equations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2012/836901 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-28636-C02-02/ES/DISEÑO Y ANALISIS DE METODOS EFICIENTES DE RESOLUCION DE ECUACIONES Y SISTEMAS NO LINEALES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-2010-2285/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cordero Barbero, A.; Hueso Pagoaga, JL.; Martínez Molada, E.; Torregrosa Sánchez, JR. (2012). A family of derivative-free methods with high order of convergence and its application to nonsmooth equations. Abstract and Applied Analysis. 2012:1-15. https://doi.org/10.1155/2012/836901 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1155/2012/836901 | |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2012 | es_ES |
dc.relation.senia | 233919 | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 | es_ES |
dc.description.references | Liu, Z., Zheng, Q., & Zhao, P. (2010). A variant of Steffensen’s method of fourth-order convergence and its applications. Applied Mathematics and Computation, 216(7), 1978-1983. doi:10.1016/j.amc.2010.03.028 | es_ES |
dc.description.references | Dehghan, M., & Hajarian, M. (2010). Some derivative free quadratic and cubic convergence iterative formulas for solving nonlinear equations. Computational & Applied Mathematics, 29(1). doi:10.1590/s1807-03022010000100002 | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2011). A class of Steffensen type methods with optimal order of convergence. Applied Mathematics and Computation, 217(19), 7653-7659. doi:10.1016/j.amc.2011.02.067 | es_ES |
dc.description.references | Amat, S., & Busquier, S. (2006). On a Steffensen’s type method and its behavior for semismooth equations. Applied Mathematics and Computation, 177(2), 819-823. doi:10.1016/j.amc.2005.11.032 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-z | es_ES |
dc.description.references | Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062 | es_ES |
dc.description.references | Amat, S., & Busquier, S. (2003). On a higher order Secant method. Applied Mathematics and Computation, 141(2-3), 321-329. doi:10.1016/s0096-3003(02)00257-6 | es_ES |