- -

Biomolecular Interaction Analysis of Gestrinone-anti-Gestrinone Using Arrays of High Aspect Ratio SU-8 Nanopillars

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biomolecular Interaction Analysis of Gestrinone-anti-Gestrinone Using Arrays of High Aspect Ratio SU-8 Nanopillars

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortega Higueruelo, Francisco José es_ES
dc.contributor.author Bañuls Polo, Mª José es_ES
dc.contributor.author Sanza, Francisco J. es_ES
dc.contributor.author Casquel, Rafael es_ES
dc.contributor.author Laguna, Mari Fe es_ES
dc.contributor.author Holgado, Miguel es_ES
dc.contributor.author López-Romero, David es_ES
dc.contributor.author Barrios, Carlos A. es_ES
dc.contributor.author Maquieira Catala, Ángel es_ES
dc.contributor.author Puchades Pla, Rosa es_ES
dc.date.accessioned 2013-04-16T07:02:50Z
dc.date.available 2013-04-16T07:02:50Z
dc.date.issued 2012
dc.identifier.issn 2079-6374
dc.identifier.uri http://hdl.handle.net/10251/27865
dc.description.abstract In this paper, label-free biosensing for antibody screening by periodic lattices of high-aspect ratio SU-8 nano-pillars (BICELLs) is presented. As a demonstration, the determination of anti-gestrinone antibodies from whole rabbit serum is carried out, and for the first time, the dissociation constant (KD = 6 nM) of antigen-antibody recognition process is calculated using this sensing system. After gestrinone antigen immobilization on the BICELLs, the immunorecognition was performed. The cells were interrogated vertically by using micron spot size Fourier transform visible and IR spectrometry (FT-VIS-IR), and the dip wavenumber shift was monitored. The biosensing assay exhibited good reproducibility and sensitivity (LOD = 0.75 ng/mL). es_ES
dc.format.extent 14 es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Biosensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Micro-nanofabrication es_ES
dc.subject SU-8 es_ES
dc.subject Optical interrogation es_ES
dc.subject Label-free nanobiosensing es_ES
dc.subject Gestrinone es_ES
dc.subject Immunoassay affinity constant determination es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Biomolecular Interaction Analysis of Gestrinone-anti-Gestrinone Using Arrays of High Aspect Ratio SU-8 Nanopillars es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/bios2030291
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ortega Higueruelo, FJ.; Bañuls Polo, MJ.; Sanza, FJ.; Casquel, R.; Laguna, MF.; Holgado, M.; López-Romero, D.... (2012). Biomolecular Interaction Analysis of Gestrinone-anti-Gestrinone Using Arrays of High Aspect Ratio SU-8 Nanopillars. Biosensors. 2:291-304. doi:10.3390/bios2030291 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.mdpi.com/2079-6374/2/3/291 es_ES
dc.description.upvformatpinicio 291 es_ES
dc.description.upvformatpfin 304 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2 es_ES
dc.relation.senia 232804
dc.identifier.pmid 25585931 en_EN
dc.identifier.pmcid PMC4263551 en_EN
dc.description.references Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022 es_ES
dc.description.references Luchansky, M. S., & Bailey, R. C. (2011). High-Q Optical Sensors for Chemical and Biological Analysis. Analytical Chemistry, 84(2), 793-821. doi:10.1021/ac2029024 es_ES
dc.description.references Wijaya, E., Lenaerts, C., Maricot, S., Hastanin, J., Habraken, S., Vilcot, J.-P., … Szunerits, S. (2011). Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Current Opinion in Solid State and Materials Science, 15(5), 208-224. doi:10.1016/j.cossms.2011.05.001 es_ES
dc.description.references Kuo, W.-C., Chou, C., & Wu, H.-T. (2003). Optical heterodyne surface-plasmon resonance biosensor. Optics Letters, 28(15), 1329. doi:10.1364/ol.28.001329 es_ES
dc.description.references Homola, J. (2008). Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chemical Reviews, 108(2), 462-493. doi:10.1021/cr068107d es_ES
dc.description.references Lin, V. S. (1997). A Porous Silicon-Based Optical Interferometric Biosensor. Science, 278(5339), 840-843. doi:10.1126/science.278.5339.840 es_ES
dc.description.references Stefano, L. D., Rotiroti, L., Rea, I., Moretti, L., Francia, G. D., Massera, E., … Rendina, I. (2006). Porous silicon-based optical biochips. Journal of Optics A: Pure and Applied Optics, 8(7), S540-S544. doi:10.1088/1464-4258/8/7/s37 es_ES
dc.description.references Barrios, C. A., Bañuls, M. J., González-Pedro, V., Gylfason, K. B., Sánchez, B., Griol, A., … Casquel, R. (2008). Label-free optical biosensing with slot-waveguides. Optics Letters, 33(7), 708. doi:10.1364/ol.33.000708 es_ES
dc.description.references Heideman, R. G., Kooyman, R. P. H., & Greve, J. (1993). Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor. Sensors and Actuators B: Chemical, 10(3), 209-217. doi:10.1016/0925-4005(93)87008-d es_ES
dc.description.references Jiménez, D., Bartolomé, E., Moreno, M., Muñoz, J., & Domínguez, C. (1996). An integrated silicon ARROW Mach-Zehnder interferometer for sensing applications. Optics Communications, 132(5-6), 437-441. doi:10.1016/0030-4018(96)00387-2 es_ES
dc.description.references Luff, B. J., Wilson, R., Schiffrin, D. J., Harris, R. D., & Wilkinson, J. S. (1996). Integrated-optical directional coupler biosensor. Optics Letters, 21(8), 618. doi:10.1364/ol.21.000618 es_ES
dc.description.references Yalcin, A., Popat, K. C., Aldridge, J. C., Desai, T. A., Hryniewicz, J., Chbouki, N., … Goldberg, B. B. (2006). Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 12(1), 148-155. doi:10.1109/jstqe.2005.863003 es_ES
dc.description.references Boyd, R. W., & Heebner, J. E. (2001). Sensitive disk resonator photonic biosensor. Applied Optics, 40(31), 5742. doi:10.1364/ao.40.005742 es_ES
dc.description.references Holgado, M., Barrios, C. A., Ortega, F. J., Sanza, F. J., Casquel, R., Laguna, M. F., … Maquieira, A. (2010). Label-free biosensing by means of periodic lattices of high aspect ratio SU-8 nano-pillars. Biosensors and Bioelectronics, 25(12), 2553-2558. doi:10.1016/j.bios.2010.04.042 es_ES
dc.description.references Leeds, A. R., Van Keuren, E. R., Durst, M. E., Schneider, T. W., Currie, J. F., & Paranjape, M. (2004). Integration of microfluidic and microoptical elements using a single-mask photolithographic step. Sensors and Actuators A: Physical, 115(2-3), 571-580. doi:10.1016/j.sna.2004.03.052 es_ES
dc.description.references Villanueva, G., Plaza, J. A., Sánchez-Amores, A., Bausells, J., Martínez, E., Samitier, J., & Errachid, A. (2006). Deep reactive ion etching and focused ion beam combination for nanotip fabrication. Materials Science and Engineering: C, 26(2-3), 164-168. doi:10.1016/j.msec.2006.01.002 es_ES
dc.description.references Desmet, L., Overmeire, S. V., Erps, J. V., Ottevaere, H., Debaes, C., & Thienpont, H. (2006). Elastomeric inverse moulding and vacuum casting process characterization for the fabrication of arrays of concave refractive microlenses. Journal of Micromechanics and Microengineering, 17(1), 81-88. doi:10.1088/0960-1317/17/1/011 es_ES
dc.description.references Blagoi, G., Keller, S., Johansson, A., Boisen, A., & Dufva, M. (2008). Functionalization of SU-8 photoresist surfaces with IgG proteins. Applied Surface Science, 255(5), 2896-2902. doi:10.1016/j.apsusc.2008.08.089 es_ES
dc.description.references Sanza, F. J., Holgado, M., Ortega, F. J., Casquel, R., López-Romero, D., Bañuls, M. J., … Maquieira, A. (2011). Bio-Photonic Sensing Cells over transparent substrates for anti-gestrinone antibodies biosensing. Biosensors and Bioelectronics, 26(12), 4842-4847. doi:10.1016/j.bios.2011.06.010 es_ES
dc.description.references Olkhov, R. V., & Shaw, A. M. (2010). Quantitative label-free screening for antibodies using scattering biophotonic microarray imaging. Analytical Biochemistry, 396(1), 30-35. doi:10.1016/j.ab.2009.08.008 es_ES
dc.description.references Edwards, P. R., & Leatherbarrow, R. J. (1997). Determination of Association Rate Constants by an Optical Biosensor Using Initial Rate Analysis. Analytical Biochemistry, 246(1), 1-6. doi:10.1006/abio.1996.9922 es_ES
dc.description.references Brun, E. M., Hernández-Albors, A., Ventura, R., Puchades, R., & Maquieira, Á. (2010). Enzyme-linked immunosorbent assays for the synthetic steroid gestrinone. Talanta, 82(4), 1581-1587. doi:10.1016/j.talanta.2010.07.067 es_ES
dc.description.references López-Romero, D., Barrios, C. A., Holgado, M., Laguna, M. F., & Casquel, R. (2010). High aspect-ratio SU-8 resist nano-pillar lattice by e-beam direct writing and its application for liquid trapping. Microelectronic Engineering, 87(4), 663-667. doi:10.1016/j.mee.2009.09.007 es_ES
dc.description.references Huang, N.-P., Vörös, J., De Paul, S. M., Textor, M., & Spencer, N. D. (2002). Biotin-Derivatized Poly(l-lysine)-g-poly(ethylene glycol):  A Novel Polymeric Interface for Bioaffinity Sensing. Langmuir, 18(1), 220-230. doi:10.1021/la010913m es_ES
dc.description.references Liao, W., Wei, F., Qian, M. X., & Zhao, X. S. (2004). Characterization of protein immobilization on alkyl monolayer modified silicon(111) surface. Sensors and Actuators B: Chemical, 101(3), 361-367. doi:10.1016/j.snb.2004.04.006 es_ES
dc.description.references Linan Jiang, Gerhardt, K. P., Myer, B., Zohar, Y., & Pau, S. (2008). Evanescent-Wave Spectroscopy Using an SU-8 Waveguide for Rapid Quantitative Detection of Biomolecules. Journal of Microelectromechanical Systems, 17(6), 1495-1500. doi:10.1109/jmems.2008.2006814 es_ES
dc.description.references La Marca, A., Giulini, S., Vito, G., Orvieto, R., Volpe, A., & Jasonni, V. M. (2004). Gestrinone in the treatment of uterine leiomyomata: Effects on uterine blood supply. Fertility and Sterility, 82(6), 1694-1696. doi:10.1016/j.fertnstert.2004.08.004 es_ES
dc.description.references Mora, G., Faundes, A., & Pastore, U. (1974). Clinical evaluation of an oral progestin contraceptive, R-2323, 5mg, administered at weekly intervals. Contraception, 10(2), 145-157. doi:10.1016/0010-7824(74)90070-5 es_ES
dc.description.references Gao, X., Wu, E., & Chen, G. (2007). Mechanism of emergency contraception with gestrinone: a preliminary investigation. Contraception, 76(3), 221-227. doi:10.1016/j.contraception.2007.05.089 es_ES
dc.description.references Vercellini, P., Somigliana, E., Viganò, P., Abbiati, A., Barbara, G., & Crosignani, P. G. (2009). Endometriosis. Drugs, 69(6), 649-675. doi:10.2165/00003495-200969060-00002 es_ES
dc.description.references Marie, R., Schmid, S., Johansson, A., Ejsing, L., Nordström, M., Häfliger, D., … Dufva, M. (2006). Immobilisation of DNA to polymerised SU-8 photoresist. Biosensors and Bioelectronics, 21(7), 1327-1332. doi:10.1016/j.bios.2005.03.004 es_ES
dc.description.references Wang, Y., Bachman, M., Sims, C. E., Li, G. P., & Allbritton, N. L. (2006). Simple Photografting Method to Chemically Modify and Micropattern the Surface of SU-8 Photoresist. Langmuir, 22(6), 2719-2725. doi:10.1021/la053188e es_ES
dc.description.references Olkhov, R. V., & Shaw, A. M. (2008). Label-free antibody–antigen binding detection by optical sensor array based on surface-synthesized gold nanoparticles. Biosensors and Bioelectronics, 23(8), 1298-1302. doi:10.1016/j.bios.2007.11.023 es_ES
dc.description.references Olkhov, R. V., Fowke, J. D., & Shaw, A. M. (2009). Whole serum BSA antibody screening using a label-free biophotonic nanoparticle array. Analytical Biochemistry, 385(2), 234-241. doi:10.1016/j.ab.2008.10.042 es_ES
dc.description.references Chiem, N. H., & Harrison, D. J. (1998). Monoclonal antibody binding affinity determined by microchip-based capillary electrophoresis. Electrophoresis, 19(16-17), 3040-3044. doi:10.1002/elps.1150191641 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem