- -

Calcium binding and and ionic conduction in single conical nanopores with polyacid chains: model and experiments

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Calcium binding and and ionic conduction in single conical nanopores with polyacid chains: model and experiments

Show simple item record

Files in this item

dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Nasir, Saima es_ES
dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Cervera, Javier es_ES
dc.contributor.author Mafe, Salvador es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.date.accessioned 2013-04-17T12:42:24Z
dc.date.issued 2012
dc.identifier.issn 1936-0851
dc.identifier.uri http://hdl.handle.net/10251/27995
dc.description.abstract Calcium binding to fixed charge groups confined over nanoscale regions is relevant to ion equilibrium and transport in the ionic channels of the cell membranes and artificial nanopores. We present an experimental and theoretical description of the dissociation equilibrium and transport in a single conical nanopore functionalized with pH-sensitive carboxylic acid groups and phosphonic acid chains. Different phenomena are simultaneously present in this basic problem of physical and biophysical chemistry: (i) the divalent nature of the phosphonic acid groups fixed to the pore walls and the influence of the pH and calcium on the reversible dissociation equilibrium of these groups; (ii) the asymmetry of the fixed charge density; and (iii) the effects of the applied potential difference and calcium concentration on the observed ionic currents. The significant difference between the carboxylate and phosphonate groups with respect to the calcium binding is clearly observed in the corresponding current-voltage (I-V) curves and can be rationalized by using a simple molecular model based on the grand partition function formalism of statistical thermodynamics. The I-V curves of the asymmetric nanopore can be described by the Poisson and Nernst-Planck equations. The results should be of interest for the basic understanding of divalent ion binding and transport in biological ion channels, desalination membranes, and controlled drug release devices. © 2012 American Chemical Society. es_ES
dc.description.sponsorship P.R., J.C., and S.M. acknowledge the financial support from the Generalitat Valenciana (project PRO-METEO/GV/0069), Ministry of Science and Innovation of Spain, Materials Program (project nos. MAT2009-07747 and MAT2012-32084), and FEDER. M.A., S.N., and W.E. gratefully acknowledge financial support by the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC, and Prof. C. Trautmann (GSI, Department of Materials Research) for support with irradiation experiments. en_EN
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation GV/PROMETEO/GV/0069
dc.relation MICINN/MAT2009-07747
dc.relation MICINN/MAT2012-32084
dc.relation.ispartof ACS Nano es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Calcium binding es_ES
dc.subject Conical nanopore es_ES
dc.subject Current-voltage curves es_ES
dc.subject Dissociation equilibria es_ES
dc.subject Applied potentials es_ES
dc.subject Biological ion channels es_ES
dc.subject Calcium concentration es_ES
dc.subject Carboxylic acid groups es_ES
dc.subject Conical nanopores es_ES
dc.subject Controlled drug release es_ES
dc.subject Current voltage curve es_ES
dc.subject Desalination membranes es_ES
dc.subject Fixed charge density es_ES
dc.subject Fixed Charges es_ES
dc.subject Functionalized es_ES
dc.subject I - V curve es_ES
dc.subject Ion binding es_ES
dc.subject Ion equilibrium es_ES
dc.subject Ionic channels es_ES
dc.subject Ionic current es_ES
dc.subject Nanoscale regions es_ES
dc.subject Nernst-Planck equations es_ES
dc.subject Partition functions es_ES
dc.subject PH sensitive es_ES
dc.subject Phosphonate group es_ES
dc.subject Phosphonic acid groups es_ES
dc.subject Phosphonic acids es_ES
dc.subject Poly acids es_ES
dc.subject Pore wall es_ES
dc.subject Reversible dissociation es_ES
dc.subject Carboxylation es_ES
dc.subject Carboxylic acids es_ES
dc.subject Cell membranes es_ES
dc.subject Cytology es_ES
dc.subject Desalination es_ES
dc.subject Dissociation es_ES
dc.subject Functional groups es_ES
dc.subject Ions es_ES
dc.subject Nanopores es_ES
dc.subject PH effects es_ES
dc.subject Quantum theory es_ES
dc.subject Statistical mechanics es_ES
dc.subject Thermodynamics es_ES
dc.subject Water filtration es_ES
dc.subject Calcium es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Calcium binding and and ionic conduction in single conical nanopores with polyacid chains: model and experiments es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1021/nn303669g
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ali, M.; Nasir, S.; Ramirez Hoyos, P.; Cervera, J.; Mafe, S.; Ensinger, W. (2012). Calcium binding and and ionic conduction in single conical nanopores with polyacid chains: model and experiments. ACS Nano. 6(10):9247-9257. doi:10.1021/nn303669g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://pubs.acs.org/doi/ipdf/10.1021/nn303669g es_ES
dc.description.upvformatpinicio 9247 es_ES
dc.description.upvformatpfin 9257 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 228743
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Ciencia e Innovación


This item appears in the following Collection(s)

Show simple item record