- -

Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates

Mostrar el registro completo del ítem

Borrell Tomás, MA.; Torrecillas, R.; Rocha, VG.; Fernández, A. (2012). Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates. Fuel Cells. 12(4):599-605. https://doi.org/10.1002/fuce.201100042

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28111

Ficheros en el ítem

Metadatos del ítem

Título: Alumina-carbon nanofibers nanocomposites obtained by spark plasma sintering for proton exchange membrane fuel cell bipolar plates
Autor: Borrell Tomás, María Amparo Torrecillas, Ramón Rocha, Victoria G. Fernández, Adolfo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Fecha difusión:
Resumen:
[EN] There is an increasing demand of multifunctional materials for a wide variety of technological developments. Bipolar plates for proton exchange membrane fuel cells are an example of complex functionality components ...[+]
Palabras clave: Bipolar plates , Carbon Nanofibers , Nanocomposites , Spark plasma sintering
Derechos de uso: Cerrado
Fuente:
Fuel Cells. (issn: 1615-6846 )
DOI: 10.1002/fuce.201100042
Editorial:
Wiley-VCH Verlag
Versión del editor: http://onlinelibrary.wiley.com/doi/10.1002/fuce.201100042/pdf
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//MAT2006-01783/ES/MATERIALES CERAMICOS NANOESTRUCTURADOS TRANSPARENTES PARA APLICACIONES OPTICAS/
info:eu-repo/grantAgreement/FICYT//PC07-021/
info:eu-repo/grantAgreement/MEC//MAT2007-30989-E/ES/CERCANANO/
Agradecimientos:
This work has been carried out with financial support of National Plan Projects MAT2006-01783 and MAT2007-30989-E and the Regional Project FICYT PC07-021. A. Borrell, acknowledges the Spanish Ministry of Science and ...[+]
Tipo: Artículo

References

Carrette, L., Friedrich, K. A., & Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 1(4), 162-193. doi:10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.0.co;2-z

Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6

2002 www.afdc.energy.gov/afdc/pdfs/racetothefuture.pdf [+]
Carrette, L., Friedrich, K. A., & Stimming, U. (2000). Fuel Cells: Principles, Types, Fuels, and Applications. ChemPhysChem, 1(4), 162-193. doi:10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.0.co;2-z

Mehta, V., & Cooper, J. S. (2003). Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1), 32-53. doi:10.1016/s0378-7753(02)00542-6

2002 www.afdc.energy.gov/afdc/pdfs/racetothefuture.pdf

Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620

Bar-On, I., Kirchain, R., & Roth, R. (2002). Technical cost analysis for PEM fuel cells. Journal of Power Sources, 109(1), 71-75. doi:10.1016/s0378-7753(02)00062-9

Tsuchiya, H. (2004). Mass production cost of PEM fuel cell by learning curve. International Journal of Hydrogen Energy, 29(10), 985-990. doi:10.1016/j.ijhydene.2003.10.011

HERMANN, A., CHAUDHURI, T., & SPAGNOL, P. (2005). Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 30(12), 1297-1302. doi:10.1016/j.ijhydene.2005.04.016

Wind, J., Späh, R., Kaiser, W., & Böhm, G. (2002). Metallic bipolar plates for PEM fuel cells. Journal of Power Sources, 105(2), 256-260. doi:10.1016/s0378-7753(01)00950-8

Dhakate, S. R., Sharma, S., Borah, M., Mathur, R. B., & Dhami, T. L. (2008). Development and Characterization of Expanded Graphite-Based Nanocomposite as Bipolar Plate for Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Energy & Fuels, 22(5), 3329-3334. doi:10.1021/ef800135f

Introduction to Glasses and Ceramic 1991

Merkoçi, A. (2005). Carbon Nanotubes in Analytical Sciences. Microchimica Acta, 152(3-4), 157-174. doi:10.1007/s00604-005-0439-z

Groza, J. R., & Zavaliangos, A. (2000). Sintering activation by external electrical field. Materials Science and Engineering: A, 287(2), 171-177. doi:10.1016/s0921-5093(00)00771-1

Wang, S.-Y., Wang, W., Wang, W.-Z., & Du, Y.-W. (2002). Preparation and characterization of highly oriented NiO(200) films by a pulse ultrasonic spray pyrolysis method. Materials Science and Engineering: B, 90(1-2), 133-137. doi:10.1016/s0921-5107(01)00922-9

Ci, L., Wei, J., Wei, B., Liang, J., Xu, C., & Wu, D. (2001). Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method. Carbon, 39(3), 329-335. doi:10.1016/s0008-6223(00)00126-3

Kirstein, A. F., & Woolley, R. M. (1967). Symmetrical bending of thin circular elastic plates on equally spaced point supports. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation, 71C(1), 1. doi:10.6028/jres.071c.002

STM Annual Book of Standards 1996

ANSTIS, G. R., CHANTIKUL, P., LAWN, B. R., & MARSHALL, D. B. (1981). A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. Journal of the American Ceramic Society, 64(9), 533-538. doi:10.1111/j.1151-2916.1981.tb10320.x

Borrell, A., Fernández, A., Merino, C., & Torrecillas, R. (2010). High density carbon materials obtained at relatively low temperature by spark plasma sintering of carbon nanofibers. International Journal of Materials Research, 101(1), 112-116. doi:10.3139/146.110246

Yamamoto, G., Omori, M., Hashida, T., & Kimura, H. (2008). A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties. Nanotechnology, 19(31), 315708. doi:10.1088/0957-4484/19/31/315708

Maensiri, S., Laokul, P., Klinkaewnarong, J., & Amornkitbamrung, V. (2007). Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties. Materials Science and Engineering: A, 447(1-2), 44-50. doi:10.1016/j.msea.2006.08.009

Hirota, K., Takaura, Y., Kato, M., & Miyamoto, Y. (2007). Fabrication of carbon nanofiber(CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties. Journal of Materials Science, 42(13), 4792-4800. doi:10.1007/s10853-006-0830-0

Borrell, A., Rocha, V. G., Torrecillas, R., & Fernández, A. (2011). Surface coating on carbon nanofibers with alumina precursor by different synthesis routes. Composites Science and Technology, 71(1), 18-22. doi:10.1016/j.compscitech.2010.09.011

Hall, E. O. (1951). The Deformation and Ageing of Mild Steel: III Discussion of Results. Proceedings of the Physical Society. Section B, 64(9), 747-753. doi:10.1088/0370-1301/64/9/303

www.schunk.pt/PT/catalogos/Placasbipolares Schunk_parapilhasdecombustivel.pdf 2009

www.sglgroup.com/cms/international/products/product-groups/eg/ sigracetbipolar plates/index.html?locale=en 2009

Wolf, H., & Willert-Porada, M. (2006). Electrically conductive LCP–carbon composite with low carbon content for bipolar plate application in polymer electrolyte membrane fuel cell. Journal of Power Sources, 153(1), 41-46. doi:10.1016/j.jpowsour.2005.03.182

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem