- -

New sources of resistance to PepMV in tomato

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

New sources of resistance to PepMV in tomato

Show full item record

Soler Aleixandre, S.; López Del Rincón, C.; Prohens Tomás, J.; Nuez Viñals, F. (2011). New sources of resistance to PepMV in tomato. Journal of Plant Diseases and Protection. 118(5):149-155. doi:10.1007/BF03356397

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28325

Files in this item

Item Metadata

Title: New sources of resistance to PepMV in tomato
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Issued date:
Abstract:
Pepino mosaic virus (PepMV) disease causes important losses in tomato (Solanum lycopersicum) yield around the world. In order to find new sources of resistance to this virus, a collection of accessions from different ...[+]
Subjects: Germplasm screening , Mechanical inoculation , Potexvirus , S. lycopersicum , Solanum lycopersicoides , Wild relatives , Breeding population , Commercial species , Concentration (composition) , Crop damage , Dicotyledon , Germplasm , Infectivity , Inoculation , Resistance management , Viral disease , Virus , Wild population , Lycopersicon , Lycopersicon esculentum , Pepino mosaic virus , Solanum
Copyrigths: Cerrado
Source:
Journal of Plant Diseases and Protection. (issn: 1861-3829 )
DOI: 10.1007/BF03356397
Publisher:
Eugen Ulmer
Publisher version: http://www.dx.doi.org/10.1007/BF03356397
Type: Artículo

References

Aparicio F, Soler S, Aramburu J, Galipienso L, Nuez F, Pallás V & López C, 2009. Simultaneous detection of six RNA plant viruses affecting tomato crops using a single digoxigenin- labelled polyprobe. Eur J Plant Pathol 123, 117–123.

Canady MA, Meglic V & Chetelat R, 2005. A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48, 685–697.

Clark MF & Adams AN, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay (ELISA) for the detection of plant viruses. J Gen Virol 34, 475–483. [+]
Aparicio F, Soler S, Aramburu J, Galipienso L, Nuez F, Pallás V & López C, 2009. Simultaneous detection of six RNA plant viruses affecting tomato crops using a single digoxigenin- labelled polyprobe. Eur J Plant Pathol 123, 117–123.

Canady MA, Meglic V & Chetelat R, 2005. A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48, 685–697.

Clark MF & Adams AN, 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay (ELISA) for the detection of plant viruses. J Gen Virol 34, 475–483.

Díez MJ & Nuez F, 2008. Tomato. In: Prohens, J & Nuez, F (Eds.): Handbook of plant breeding: Vegetables II. Springer, New York. 249–323.

EPPO (European and Mediterranean Plant Protection Organization), 2010. Pepino mosaic virus. http://www.eppo.org/QUARANTINE/Alert_List/viruses/PEPMV0.htm . Consulted 22 Dec. 2010.

Fakhro A, van Bargen S, Bandte M, Büttner C, Franken P & Schwarz D, 2011. Susceptibility of different plant species and tomato cultivars to two isolates of Pepino mosaic virus. Eur J Plant Pathol 129, 579–590.

Gómez P, Sempere RN, Elena SF & Aranda MA, 2009. Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol 83, 12378–12387.

Hanssen IM & Thomma BPHJ, 2010. Pepino mosaic virus: a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol Plant Pathol 11, 179–189.

Hanssen IM, van Esse HP, Ballester AR, Hogewoning SW, Parra NO, Paeleman A, Lievens B, Bovy AG & Thomma BPHJ, 2011. Differential tomato transcriptomic responses induced by Pepino mosaic virus isolates with different aggressiveness. Plant Physiol 156, 301–308.

Jones RAC, Koening R & Lesemann DE, 1980. Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol 94, 61–68.

Ling KS & Scott JW, 2007. Sources of resistance to Pepino mosaic virus in tomato accessions. Plant Dis 91, 749–753.

López C, Soler S & Nuez F, 2005. Comparison of the complete sequences of three different isolates of Pepino mosaic virus: Size variability of the TGBp3 protein between tomato and L. peruvianum isolates. Arch Virol 150, 619–627.

Miller JC & Tanksley SD, 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80, 437–448.

Picó B, Herraiz J, Ruiz JJ & Nuez F, 2002. Widening the genetic basis of virus resistance in tomato. Sci Hort 94, 73–89.

Shipp JL, Buitenhuis R, Stobbs L, Wang K, Kim WS & Ferguson G, 2008. Vectoring of Pepino mosaic virus by bumble-bees in tomato greenhouses. Ann Appl Biol 53, 149–155.

Soler-Aleixandre S, López C, Cebolla-Cornejo J & Nuez F, 2007. Sources of resistance to Pepino mosaic virus (PepMV) in tomato. Hortscience 42, 40–45.

Soler-Aleixandre S, López C, Díez MJ, Pérez-De Castro A & Nuez F, 2005. Association of Pepino mosaic virus with tomato collapse. J Phytopathol 153, 1–6.

Zhao LX, Qiu CX, Li JF, Chai YR, Kai GY, Li ZG, Sun XF & Tang KX, 2005. Investigation of disease resistance and cold tolerance of Solanum lycopersicoides for tomato improvement. Hortscience 40, 43–46.

Zitikaite I, Staniulis J, Jomantiene R & Petniunas P, 2004. Molecular and immunoelectron microscopic identification of Pepino mosaic potexvirus in tomato fruits imported from Spain. Botanica Lithuanica 10, 89–98.

[-]

This item appears in the following Collection(s)

Show full item record