- -

Virus infections suppresses Nicotiana benthamiana adaptive phenotypic plasticity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Virus infections suppresses Nicotiana benthamiana adaptive phenotypic plasticity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bedhomme ., Stephanie es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2013-04-30T13:48:09Z
dc.date.available 2013-04-30T13:48:09Z
dc.date.issued 2011-02-17 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/28357
dc.description.abstract Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana ¿ potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked.
dc.description.sponsorship This work has been supported by grants BFU2009-06993 (Ministerio de Ciencia e Innovacion, Spain) and PROMETEO2010-019 (Generalitat Valenciana) (S.F.E.) and a CSIC JAE-Doc contract (S.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés
dc.publisher Public Library of Science
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Virus infections suppresses Nicotiana benthamiana adaptive phenotypic plasticity
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0017275
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F019/ES/Implicaciones evolutivas de la supresión del silenciamiento del RNA por parte de proteína virales/
dc.rights.accessRights Abierto
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
dc.description.bibliographicCitation Bedhomme ., S.; Elena Fito, SF. (2011). Virus infections suppresses Nicotiana benthamiana adaptive phenotypic plasticity. PLoS ONE. 6:17275-17275. https://doi.org/10.1371/journal.pone.0017275 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.plosone.org/article/info:doi/10.1371/journal.pone.0017275
dc.description.upvformatpinicio 17275 es_ES
dc.description.upvformatpfin 17275 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 218183 es_ES
dc.identifier.pmid 21359142 en_EN
dc.identifier.pmcid PMC3040767 en_EN
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Santos, M., Borash, D. J., Joshi, A., Bounlutay, N., & Mueller, L. D. (1997). Density-Dependent Natural Selection in Drosophila: Evolution of Growth Rate and Body Size. Evolution, 51(2), 420. doi:10.2307/2411114 es_ES
dc.description.references Borash, D. J., Gibbs, A. G., Joshi, A., & Mueller, L. D. (1998). A Genetic Polymorphism Maintained by Natural Selection in a Temporally Varying Environment. The American Naturalist, 151(2), 148-156. doi:10.1086/286108 es_ES
dc.description.references Franklin, K. A. (2008). Shade avoidance. New Phytologist, 179(4), 930-944. doi:10.1111/j.1469-8137.2008.02507.x es_ES
dc.description.references Dudley, S. A., & Schmitt, J. (1996). Testing the Adaptive Plasticity Hypothesis: Density-Dependent Selection on Manipulated Stem Length in Impatiens capensis. The American Naturalist, 147(3), 445-465. doi:10.1086/285860 es_ES
dc.description.references Bedhomme, S., Agnew, P., Vital, Y., Sidobre, C., & Michalakis, Y. (2005). Prevalence-Dependent Costs of Parasite Virulence. PLoS Biology, 3(8), e262. doi:10.1371/journal.pbio.0030262 es_ES
dc.description.references Finckh, M. R., & Mundt, C. C. (1996). Temporal Dynamics of Plant Competition in Genetically Diverse Wheat Populations in the Presence and Absence of Stripe Rust. The Journal of Applied Ecology, 33(5), 1041. doi:10.2307/2404684 es_ES
dc.description.references Burdon, J. J., Groves, R. H., Kaye, P. E., & Speer, S. S. (1984). Competition in mixtures of susceptible and resistant genotypes of Chondrilla juncea differentially infected with rust. Oecologia, 64(2), 199-203. doi:10.1007/bf00376871 es_ES
dc.description.references PAUL, N. D., & AYRES, P. G. (1986). INTERFERENCE BETWEEN HEALTHY AND RUSTED GROUNDSEL (SENECIO VULGARIS L.) WITHIN MIXED POPULATIONS OF DIFFERENT DENSITIES AND PROPORTIONS. New Phytologist, 104(2), 257-269. doi:10.1111/j.1469-8137.1986.tb00650.x es_ES
dc.description.references Damgaard, C., & Jensen, B. D. (2002). Disease resistance in Arabidopsisthaliana increases the competitive ability and the predicted probability of long-term ecological success under disease pressure. Oikos, 98(3), 459-466. doi:10.1034/j.1600-0706.2002.980310.x es_ES
dc.description.references FRIESS, N., & MAILLET, J. (1996). Influence of cucumber mosaic virus infection on the intraspecific competitive ability and fitness of purslane (Portulaca oleracea). New Phytologist, 132(1), 103-111. doi:10.1111/j.1469-8137.1996.tb04514.x es_ES
dc.description.references Sisterson, M. S., & Averill, A. L. (2003). Interactions between parasitized and unparasitized conspecifics: parasitoids modulate competitive dynamics. Oecologia, 135(3), 362-371. doi:10.1007/s00442-003-1205-8 es_ES
dc.description.references Koprivnikar, J., Forbes, M. R., & Baker, R. L. (2007). Larval amphibian growth and development under varying density: are parasitized individuals poor competitors? Oecologia, 155(3), 641-649. doi:10.1007/s00442-007-0937-2 es_ES
dc.description.references Carrasco, P., de la Iglesia, F., & Elena, S. F. (2007). Distribution of Fitness and Virulence Effects Caused by Single-Nucleotide Substitutions in Tobacco Etch Virus. Journal of Virology, 81(23), 12979-12984. doi:10.1128/jvi.00524-07 es_ES
dc.description.references KLECZKOWSKI, A. (1949). THE TRANSFORMATION OF LOCAL LESION COUNTS FOR STATISTICAL ANALYSIS. Annals of Applied Biology, 36(1), 139-152. doi:10.1111/j.1744-7348.1949.tb06404.x es_ES
dc.description.references Gotthard, K., Nylin, S., & Nylin, S. (1995). Adaptive Plasticity and Plasticity as an Adaptation: A Selective Review of Plasticity in Animal Morphology and Life History. Oikos, 74(1), 3. doi:10.2307/3545669 es_ES
dc.description.references Bedhomme, S., Agnew, P., Sidobre, C., & Michalakis, Y. (2004). Virulence reaction norms across a food gradient. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1540), 739-744. doi:10.1098/rspb.2003.2657 es_ES
dc.description.references RIVERO, A., AGNEW, P., BEDHOMME, S., SIDOBRE, C., & MICHALAKIS, Y. (2007). Resource depletion in Aedes aegypti mosquitoes infected by the microsporidia Vavraia culicis. Parasitology, 134(10), 1355-1362. doi:10.1017/s0031182007002703 es_ES
dc.description.references Jokela, J., Lively, C. M., Taskinen, J., & Peters, A. D. (1999). Effect of starvation on parasite-induced mortality in a freshwater snail ( Potamopyrgus antipodarum). Oecologia, 119(3), 320-325. doi:10.1007/s004420050792 es_ES
dc.description.references Jokela, J., Taskinen, J., Mutikainen, P., & Kopp, K. (2005). Virulence of parasites in hosts under environmental stress: experiments with anoxia and starvation. Oikos, 108(1), 156-164. doi:10.1111/j.0030-1299.2005.13185.x es_ES
dc.description.references Brown, M. J. F., Loosli, R., & Schmid-Hempel, P. (2000). Condition-dependent expression of virulence in a trypanosome infecting bumblebees. Oikos, 91(3), 421-427. doi:10.1034/j.1600-0706.2000.910302.x es_ES
dc.description.references Ferguson, H. M., & Read, A. F. (2002). Genetic and environmental determinants of malaria parasite virulence in mosquitoes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1497), 1217-1224. doi:10.1098/rspb.2002.2023 es_ES
dc.description.references VALE, P. F., STJERNMAN, M., & LITTLE, T. J. (2008). Temperature-dependent costs of parasitism and maintenance of polymorphism under genotype-by-environment interactions. Journal of Evolutionary Biology, 21(5), 1418-1427. doi:10.1111/j.1420-9101.2008.01555.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem