- -

Structural discrimination of robustness in transcriptional feedforward loops for pattern formation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Structural discrimination of robustness in transcriptional feedforward loops for pattern formation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodrigo, Guillermo es_ES
dc.contributor.author Elena Fito, Santiago Fco es_ES
dc.date.accessioned 2013-04-30T14:09:42Z
dc.date.available 2013-04-30T14:09:42Z
dc.date.issued 2011-02-14
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/28359
dc.description.abstract Signaling pathways are interconnected to regulatory circuits for sensing the environment and expressing the appropriate genetic profile. In particular, gradients of diffusing molecules (morphogens) determine cell fate at a given position, dictating development and spatial organization. The feedforward loop (FFL) circuit is among the simplest genetic architectures able to generate one-stripe patterns by operating as an amplitude detection device, where high output levels are achieved at intermediate input ones. Here, using a heuristic optimization-based approach, we dissected the design space containing all possible topologies and parameter values of the FFL circuits. We explored the ability of being sensitive or adaptive to variations in the critical morphogen level where cell fate is switched. We found four different solutions for precision, corresponding to the four incoherent architectures, but remarkably only one mode for adaptiveness, the incoherent type 4 (I4-FFL). We further carried out a theoretical study to unveil the design principle for such structural discrimination, finding that the synergistic action and cooperative binding on the downstream promoter are instrumental to achieve absolute adaptive responses. Subsequently, we analyzed the robustness of these optimal circuits against perturbations in the kinetic parameters and molecular noise, which has allowed us to depict a scenario where adaptiveness, parameter sensitivity and noise tolerance are different, correlated facets of the robustness of the I4-FFL circuit. Strikingly, we showed a strong correlation between the input (environment-related) and the intrinsic (mutation-related) susceptibilities. Finally, we discussed the evolution of incoherent regulations in terms of multifunctionality and robustness. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia e Innovacion grant BFU-2009-06993. GR is the recipient of a graduate fellowship from the Generalitat Valenciana (BFPI-2007-160). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Structural discrimination of robustness in transcriptional feedforward loops for pattern formation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0016904
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-06993/ES/Biologia Evolutiva Y De Sistemas De La Emergencia De Fitovirus De Rna/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//BFPI-2007-160/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Rodrigo, G.; Elena Fito, SF. (2011). Structural discrimination of robustness in transcriptional feedforward loops for pattern formation. PLoS ONE. 6:16904-16904. https://doi.org/10.1371/journal.pone.0016904 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0016904 es_ES
dc.description.upvformatpinicio 16904 es_ES
dc.description.upvformatpfin 16904 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 218181
dc.identifier.pmid 21340024 en_EN
dc.identifier.pmcid PMC3038866 en_EN
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. Journal of Theoretical Biology, 25(1), 1-47. doi:10.1016/s0022-5193(69)80016-0 es_ES
dc.description.references Ashe, H. L. (2006). The interpretation of morphogen gradients. Development, 133(3), 385-394. doi:10.1242/dev.02238 es_ES
dc.description.references Reeves, G. T., Muratov, C. B., Schüpbach, T., & Shvartsman, S. Y. (2006). Quantitative Models of Developmental Pattern Formation. Developmental Cell, 11(3), 289-300. doi:10.1016/j.devcel.2006.08.006 es_ES
dc.description.references Alon, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6), 450-461. doi:10.1038/nrg2102 es_ES
dc.description.references Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature, 434(7037), 1130-1134. doi:10.1038/nature03461 es_ES
dc.description.references Entus, R., Aufderheide, B., & Sauro, H. M. (2007). Design and implementation of three incoherent feed-forward motif based biological concentration sensors. Systems and Synthetic Biology, 1(3), 119-128. doi:10.1007/s11693-007-9008-6 es_ES
dc.description.references Sohka, T., Heins, R. A., Phelan, R. M., Greisler, J. M., Townsend, C. A., & Ostermeier, M. (2009). An externally tunable bacterial band-pass filter. Proceedings of the National Academy of Sciences, 106(25), 10135-10140. doi:10.1073/pnas.0901246106 es_ES
dc.description.references Mangan, S., & Alon, U. (2003). Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences, 100(21), 11980-11985. doi:10.1073/pnas.2133841100 es_ES
dc.description.references Ishihara, S., Fujimoto, K., & Shibata, T. (2005). Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes. Genes to Cells, 10(11), 1025-1038. doi:10.1111/j.1365-2443.2005.00897.x es_ES
dc.description.references Kim, D., Kwon, Y.-K., & Cho, K.-H. (2008). The biphasic behavior of incoherent feed-forward loops in biomolecular regulatory networks. BioEssays, 30(11-12), 1204-1211. doi:10.1002/bies.20839 es_ES
dc.description.references Kaplan, S., Bren, A., Dekel, E., & Alon, U. (2008). The incoherent feed‐forward loop can generate non‐monotonic input functions for genes. Molecular Systems Biology, 4(1), 203. doi:10.1038/msb.2008.43 es_ES
dc.description.references Mangan, S., Itzkovitz, S., Zaslaver, A., & Alon, U. (2006). The Incoherent Feed-forward Loop Accelerates the Response-time of the gal System of Escherichia coli. Journal of Molecular Biology, 356(5), 1073-1081. doi:10.1016/j.jmb.2005.12.003 es_ES
dc.description.references Goentoro, L., Shoval, O., Kirschner, M. W., & Alon, U. (2009). The Incoherent Feedforward Loop Can Provide Fold-Change Detection in Gene Regulation. Molecular Cell, 36(5), 894-899. doi:10.1016/j.molcel.2009.11.018 es_ES
dc.description.references Shoval, O., Goentoro, L., Hart, Y., Mayo, A., Sontag, E., & Alon, U. (2010). Fold-change detection and scalar symmetry of sensory input fields. Proceedings of the National Academy of Sciences, 107(36), 15995-16000. doi:10.1073/pnas.1002352107 es_ES
dc.description.references Basu, S., Mehreja, R., Thiberge, S., Chen, M.-T., & Weiss, R. (2004). Spatiotemporal control of gene expression with pulse-generating networks. Proceedings of the National Academy of Sciences, 101(17), 6355-6360. doi:10.1073/pnas.0307571101 es_ES
dc.description.references Macía, J., Widder, S., & Solé, R. (2009). Specialized or flexible feed-forward loop motifs: a question of topology. BMC Systems Biology, 3(1). doi:10.1186/1752-0509-3-84 es_ES
dc.description.references Koshland, D., Goldbeter, A., & Stock, J. (1982). Amplification and adaptation in regulatory and sensory systems. Science, 217(4556), 220-225. doi:10.1126/science.7089556 es_ES
dc.description.references Sontag, E. D. (2010). Remarks on feedforward circuits, adaptation, and pulse memory. IET Systems Biology, 4(1), 39-51. doi:10.1049/iet-syb.2008.0171 es_ES
dc.description.references Barkai, N., & Leibler, S. (1997). Robustness in simple biochemical networks. Nature, 387(6636), 913-917. doi:10.1038/43199 es_ES
dc.description.references Alon, U., Surette, M. G., Barkai, N., & Leibler, S. (1999). Robustness in bacterial chemotaxis. Nature, 397(6715), 168-171. doi:10.1038/16483 es_ES
dc.description.references Levchenko, A., & Iglesias, P. A. (2002). Models of Eukaryotic Gradient Sensing: Application to Chemotaxis of Amoebae and Neutrophils. Biophysical Journal, 82(1), 50-63. doi:10.1016/s0006-3495(02)75373-3 es_ES
dc.description.references Ma, W., Trusina, A., El-Samad, H., Lim, W. A., & Tang, C. (2009). Defining Network Topologies that Can Achieve Biochemical Adaptation. Cell, 138(4), 760-773. doi:10.1016/j.cell.2009.06.013 es_ES
dc.description.references Papatsenko, D., & Levine, M. (2005). Quantitative analysis of binding motifs mediating diverse spatial readouts of the Dorsal gradient in the Drosophila embryo. Proceedings of the National Academy of Sciences, 102(14), 4966-4971. doi:10.1073/pnas.0409414102 es_ES
dc.description.references Becskei, A., & Serrano, L. (2000). Engineering stability in gene networks by autoregulation. Nature, 405(6786), 590-593. doi:10.1038/35014651 es_ES
dc.description.references Yi, T.-M., Huang, Y., Simon, M. I., & Doyle, J. (2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences, 97(9), 4649-4653. doi:10.1073/pnas.97.9.4649 es_ES
dc.description.references Thattai, M., & van Oudenaarden, A. (2002). Attenuation of Noise in Ultrasensitive Signaling Cascades. Biophysical Journal, 82(6), 2943-2950. doi:10.1016/s0006-3495(02)75635-x es_ES
dc.description.references Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D., & van Oudenaarden, A. (2002). Regulation of noise in the expression of a single gene. Nature Genetics, 31(1), 69-73. doi:10.1038/ng869 es_ES
dc.description.references Pedraza, J. M. (2005). Noise Propagation in Gene Networks. Science, 307(5717), 1965-1969. doi:10.1126/science.1109090 es_ES
dc.description.references Ghosh, B., Karmakar, R., & Bose, I. (2005). Noise characteristics of feed forward loops. Physical Biology, 2(1), 36-45. doi:10.1088/1478-3967/2/1/005 es_ES
dc.description.references Çağatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J., & Süel, G. M. (2009). Architecture-Dependent Noise Discriminates Functionally Analogous Differentiation Circuits. Cell, 139(3), 512-522. doi:10.1016/j.cell.2009.07.046 es_ES
dc.description.references Carroll, S. B. (1990). Zebra patterns in fly embryos: Activation of stripes or repression of interstripes? Cell, 60(1), 9-16. doi:10.1016/0092-8674(90)90711-m es_ES
dc.description.references Schroeder, M. D., Pearce, M., Fak, J., Fan, H., Unnerstall, U., Emberly, E., … Gaul, U. (2004). Transcriptional Control in the Segmentation Gene Network of Drosophila. PLoS Biology, 2(9), e271. doi:10.1371/journal.pbio.0020271 es_ES
dc.description.references Cotterell, J., & Sharpe, J. (2010). An atlas of gene regulatory networks reveals multiple three‐gene mechanisms for interpreting morphogen gradients. Molecular Systems Biology, 6(1), 425. doi:10.1038/msb.2010.74 es_ES
dc.description.references Savageau, M. A. (1977). Design of molecular control mechanisms and the demand for gene expression. Proceedings of the National Academy of Sciences, 74(12), 5647-5651. doi:10.1073/pnas.74.12.5647 es_ES
dc.description.references Von Dassow, G., Meir, E., Munro, E. M., & Odell, G. M. (2000). The segment polarity network is a robust developmental module. Nature, 406(6792), 188-192. doi:10.1038/35018085 es_ES
dc.description.references Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J., & Phillips, R. (2005). Transcriptional regulation by the numbers: models. Current Opinion in Genetics & Development, 15(2), 116-124. doi:10.1016/j.gde.2005.02.007 es_ES
dc.description.references Tsang, J., Zhu, J., & van Oudenaarden, A. (2007). MicroRNA-Mediated Feedback and Feedforward Loops Are Recurrent Network Motifs in Mammals. Molecular Cell, 26(5), 753-767. doi:10.1016/j.molcel.2007.05.018 es_ES
dc.description.references Rodrigo, G., Carrera, J., & Jaramillo, A. (2007). Genetdes: automatic design of transcriptional networks. Bioinformatics, 23(14), 1857-1858. doi:10.1093/bioinformatics/btm237 es_ES
dc.description.references Rodrigo, G., Carrera, J., & Elena, S. F. (2010). Network design meets in silico evolutionary biology. Biochimie, 92(7), 746-752. doi:10.1016/j.biochi.2010.04.003 es_ES
dc.description.references Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W., & Tank, D. W. (2007). Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient. Cell, 130(1), 141-152. doi:10.1016/j.cell.2007.05.026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem