- -

GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sarrión Perdigones, Manuel Alejandro es_ES
dc.contributor.author Juárez Ortega, Paloma es_ES
dc.contributor.author Fernández Del Carmen, María Asunción es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.contributor.author Orzáez Calatayud, Diego Vicente es_ES
dc.date.accessioned 2013-04-30T14:17:54Z
dc.date.available 2013-04-30T14:17:54Z
dc.date.issued 2011
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/28362
dc.description.abstract Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (¿braid¿) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Science and Innovation grants BIO2008-03434 and BIO2010-15384. A. Sarrion-Perdigones is a recipient of a FPI fellowship of the Spanish Ministry of Science and Innovation and P. Juarez is a recipient of a FPU fellowship from the Spanish Ministry of Education. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.title GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0021622
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-03434/ES/EL FRUTO DE TOMATE COMO BIOFACTORIA DE PROTEINAS INMUNOTERAPEUTICAS ORALES: PRODUCCION DE ANTICUERPOS FRENTE A ROTAVIRUS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2010-15384/ES/FABRICANDO TOMATES SALUDABLES: BIOPIEZAS PARA INTRAGENESIS Y MOLECULAR FARMING EN SOLANACEAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Sarrión Perdigones, MA.; Juárez Ortega, P.; Fernandez Del Carmen, MA.; Granell Richart, A.; Orzáez Calatayud, DV. (2011). GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules. PLoS ONE. 7(6):21622-21622. doi:10.1371/journal.pone.0021622 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.plosone.org/article/info:doi/10.1371/journal.pone.0021622 es_ES
dc.description.upvformatpinicio 21622 es_ES
dc.description.upvformatpfin 21622 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 212705
dc.identifier.pmid 21750718 en_EN
dc.identifier.pmcid PMC3131274 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Haseloff, J., & Ajioka, J. (2009). Synthetic biology: history, challenges and prospects. Journal of The Royal Society Interface, 6(suppl_4). doi:10.1098/rsif.2009.0176.focus es_ES
dc.description.references Check, E. (2005). Designs on life. Nature, 438(7067), 417-418. doi:10.1038/438417a es_ES
dc.description.references Carter, G. W., Rush, C. G., Uygun, F., Sakhanenko, N. A., Galas, D. J., & Galitski, T. (2010). A systems-biology approach to modular genetic complexity. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(2), 026102. doi:10.1063/1.3455183 es_ES
dc.description.references Matzas, M., Stähler, P. F., Kefer, N., Siebelt, N., Boisguérin, V., Leonard, J. T., … Church, G. M. (2010). High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nature Biotechnology, 28(12), 1291-1294. doi:10.1038/nbt.1710 es_ES
dc.description.references Kosuri, S., Eroshenko, N., LeProust, E. M., Super, M., Way, J., Li, J. B., & Church, G. M. (2010). Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology, 28(12), 1295-1299. doi:10.1038/nbt.1716 es_ES
dc.description.references Ellis, T., Adie, T., & Baldwin, G. S. (2011). DNA assembly for synthetic biology: from parts to pathways and beyond. Integrative Biology, 3(2), 109-118. doi:10.1039/c0ib00070a es_ES
dc.description.references Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318 es_ES
dc.description.references Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., … Venter, J. C. (2010). Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science, 329(5987), 52-56. doi:10.1126/science.1190719 es_ES
dc.description.references Knight, T. (2003). Idempotent Vector Design for Standard Assembly of Biobricks. doi:10.21236/ada457791 es_ES
dc.description.references Anderson, J. C., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., & Keasling, J. D. (2010). BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 4(1), 1. doi:10.1186/1754-1611-4-1 es_ES
dc.description.references Engler, C., Kandzia, R., & Marillonnet, S. (2008). A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLoS ONE, 3(11), e3647. doi:10.1371/journal.pone.0003647 es_ES
dc.description.references Engler, C., Gruetzner, R., Kandzia, R., & Marillonnet, S. (2009). Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes. PLoS ONE, 4(5), e5553. doi:10.1371/journal.pone.0005553 es_ES
dc.description.references Butelli, E., Titta, L., Giorgio, M., Mock, H.-P., Matros, A., Peterek, S., … Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26(11), 1301-1308. doi:10.1038/nbt.1506 es_ES
dc.description.references Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., & Goldberg, R. B. (1990). Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. The Plant Cell, 1201-1224. doi:10.1105/tpc.2.12.1201 es_ES
dc.description.references Kobayashi, K., Munemura, I., Hinata, K., & Yamamura, S. (2006). Bisexual sterility conferred by the differential expression of Barnase and Barstar: a simple and efficient method of transgene containment. Plant Cell Reports, 25(12), 1347-1354. doi:10.1007/s00299-006-0206-6 es_ES
dc.description.references Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3 es_ES
dc.description.references Chen, Q.-J., Zhou, H.-M., Chen, J., & Wang, X.-C. (2006). A Gateway-based platform for multigene plant transformation. Plant Molecular Biology, 62(6), 927-936. doi:10.1007/s11103-006-9065-3 es_ES
dc.description.references Estornell, L. H., Orzáez, D., López-Peña, L., Pineda, B., Antón, M. T., Moreno, V., & Granell, A. (2009). A multisite gateway-based toolkit for targeted gene expression and hairpin RNA silencing in tomato fruits. Plant Biotechnology Journal, 7(3), 298-309. doi:10.1111/j.1467-7652.2009.00402.x es_ES
dc.description.references Lin, L., Liu, Y.-G., Xu, X., & Li, B. (2003). Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proceedings of the National Academy of Sciences, 100(10), 5962-5967. doi:10.1073/pnas.0931425100 es_ES
dc.description.references Fujisawa, M., Takita, E., Harada, H., Sakurai, N., Suzuki, H., Ohyama, K., … Misawa, N. (2009). Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. Journal of Experimental Botany, 60(4), 1319-1332. doi:10.1093/jxb/erp006 es_ES
dc.description.references Dafny-Yelin, M., & Tzfira, T. (2007). Delivery of Multiple Transgenes to Plant Cells. Plant Physiology, 145(4), 1118-1128. doi:10.1104/pp.107.106104 es_ES
dc.description.references Goderis, I. J. W. M., De Bolle, M. F. C., François, I. E. J. A., Wouters, P. F. J., Broekaert, W. F., & Cammue, B. P. A. (2002). Plant Molecular Biology, 50(1), 17-27. doi:10.1023/a:1016052416053 es_ES
dc.description.references Chen, Q.-J., Xie, M., Ma, X.-X., Dong, L., Chen, J., & Wang, X.-C. (2010). MISSA Is a Highly Efficient in Vivo DNA Assembly Method for Plant Multiple-Gene Transformation. Plant Physiology, 153(1), 41-51. doi:10.1104/pp.109.152249 es_ES
dc.description.references Castilho, A., Strasser, R., Stadlmann, J., Grass, J., Jez, J., Gattinger, P., … Steinkellner, H. (2010). In PlantaProtein Sialylation through Overexpression of the Respective Mammalian Pathway. Journal of Biological Chemistry, 285(21), 15923-15930. doi:10.1074/jbc.m109.088401 es_ES
dc.description.references Hamilton, C. M. (1997). A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 200(1-2), 107-116. doi:10.1016/s0378-1119(97)00388-0 es_ES
dc.description.references Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE, 6(2), e16765. doi:10.1371/journal.pone.0016765 es_ES
dc.description.references Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., & Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 29(2), 149-153. doi:10.1038/nbt.1775 es_ES
dc.description.references Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160 es_ES
dc.description.references Wieland, W. H., Lammers, A., Schots, A., & Orzáez, D. V. (2006). Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 122(3), 382-391. doi:10.1016/j.jbiotec.2005.12.020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem