Mostrar el registro sencillo del ítem
dc.contributor.author | Sarrión Perdigones, Manuel Alejandro | es_ES |
dc.contributor.author | Juárez Ortega, Paloma | es_ES |
dc.contributor.author | Fernández Del Carmen, María Asunción | es_ES |
dc.contributor.author | Granell Richart, Antonio | es_ES |
dc.contributor.author | Orzáez Calatayud, Diego Vicente | es_ES |
dc.date.accessioned | 2013-04-30T14:17:54Z | |
dc.date.available | 2013-04-30T14:17:54Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/28362 | |
dc.description.abstract | Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB), a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs) designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop (¿braid¿) topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Science and Innovation grants BIO2008-03434 and BIO2010-15384. A. Sarrion-Perdigones is a recipient of a FPI fellowship of the Spanish Ministry of Science and Innovation and P. Juarez is a recipient of a FPU fellowship from the Spanish Ministry of Education. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.subject.classification | MICROBIOLOGIA | es_ES |
dc.title | GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0021622 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2008-03434/ES/EL FRUTO DE TOMATE COMO BIOFACTORIA DE PROTEINAS INMUNOTERAPEUTICAS ORALES: PRODUCCION DE ANTICUERPOS FRENTE A ROTAVIRUS/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2010-15384/ES/FABRICANDO TOMATES SALUDABLES: BIOPIEZAS PARA INTRAGENESIS Y MOLECULAR FARMING EN SOLANACEAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Sarrión Perdigones, MA.; Juárez Ortega, P.; Fernandez Del Carmen, MA.; Granell Richart, A.; Orzáez Calatayud, DV. (2011). GoldenBraid: an iterative simple standardized cloning system system for standardized assembly assembly of recyclable reusable genetic modules. PLoS ONE. 7(6):21622-21622. doi:10.1371/journal.pone.0021622 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.plosone.org/article/info:doi/10.1371/journal.pone.0021622 | es_ES |
dc.description.upvformatpinicio | 21622 | es_ES |
dc.description.upvformatpfin | 21622 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 212705 | |
dc.identifier.pmid | 21750718 | en_EN |
dc.identifier.pmcid | PMC3131274 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Haseloff, J., & Ajioka, J. (2009). Synthetic biology: history, challenges and prospects. Journal of The Royal Society Interface, 6(suppl_4). doi:10.1098/rsif.2009.0176.focus | es_ES |
dc.description.references | Check, E. (2005). Designs on life. Nature, 438(7067), 417-418. doi:10.1038/438417a | es_ES |
dc.description.references | Carter, G. W., Rush, C. G., Uygun, F., Sakhanenko, N. A., Galas, D. J., & Galitski, T. (2010). A systems-biology approach to modular genetic complexity. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20(2), 026102. doi:10.1063/1.3455183 | es_ES |
dc.description.references | Matzas, M., Stähler, P. F., Kefer, N., Siebelt, N., Boisguérin, V., Leonard, J. T., … Church, G. M. (2010). High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nature Biotechnology, 28(12), 1291-1294. doi:10.1038/nbt.1710 | es_ES |
dc.description.references | Kosuri, S., Eroshenko, N., LeProust, E. M., Super, M., Way, J., Li, J. B., & Church, G. M. (2010). Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology, 28(12), 1295-1299. doi:10.1038/nbt.1716 | es_ES |
dc.description.references | Ellis, T., Adie, T., & Baldwin, G. S. (2011). DNA assembly for synthetic biology: from parts to pathways and beyond. Integrative Biology, 3(2), 109-118. doi:10.1039/c0ib00070a | es_ES |
dc.description.references | Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6(5), 343-345. doi:10.1038/nmeth.1318 | es_ES |
dc.description.references | Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R.-Y., Algire, M. A., … Venter, J. C. (2010). Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science, 329(5987), 52-56. doi:10.1126/science.1190719 | es_ES |
dc.description.references | Knight, T. (2003). Idempotent Vector Design for Standard Assembly of Biobricks. doi:10.21236/ada457791 | es_ES |
dc.description.references | Anderson, J. C., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., & Keasling, J. D. (2010). BglBricks: A flexible standard for biological part assembly. Journal of Biological Engineering, 4(1), 1. doi:10.1186/1754-1611-4-1 | es_ES |
dc.description.references | Engler, C., Kandzia, R., & Marillonnet, S. (2008). A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLoS ONE, 3(11), e3647. doi:10.1371/journal.pone.0003647 | es_ES |
dc.description.references | Engler, C., Gruetzner, R., Kandzia, R., & Marillonnet, S. (2009). Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes. PLoS ONE, 4(5), e5553. doi:10.1371/journal.pone.0005553 | es_ES |
dc.description.references | Butelli, E., Titta, L., Giorgio, M., Mock, H.-P., Matros, A., Peterek, S., … Martin, C. (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology, 26(11), 1301-1308. doi:10.1038/nbt.1506 | es_ES |
dc.description.references | Koltunow, A. M., Truettner, J., Cox, K. H., Wallroth, M., & Goldberg, R. B. (1990). Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. The Plant Cell, 1201-1224. doi:10.1105/tpc.2.12.1201 | es_ES |
dc.description.references | Kobayashi, K., Munemura, I., Hinata, K., & Yamamura, S. (2006). Bisexual sterility conferred by the differential expression of Barnase and Barstar: a simple and efficient method of transgene containment. Plant Cell Reports, 25(12), 1347-1354. doi:10.1007/s00299-006-0206-6 | es_ES |
dc.description.references | Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3 | es_ES |
dc.description.references | Chen, Q.-J., Zhou, H.-M., Chen, J., & Wang, X.-C. (2006). A Gateway-based platform for multigene plant transformation. Plant Molecular Biology, 62(6), 927-936. doi:10.1007/s11103-006-9065-3 | es_ES |
dc.description.references | Estornell, L. H., Orzáez, D., López-Peña, L., Pineda, B., Antón, M. T., Moreno, V., & Granell, A. (2009). A multisite gateway-based toolkit for targeted gene expression and hairpin RNA silencing in tomato fruits. Plant Biotechnology Journal, 7(3), 298-309. doi:10.1111/j.1467-7652.2009.00402.x | es_ES |
dc.description.references | Lin, L., Liu, Y.-G., Xu, X., & Li, B. (2003). Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proceedings of the National Academy of Sciences, 100(10), 5962-5967. doi:10.1073/pnas.0931425100 | es_ES |
dc.description.references | Fujisawa, M., Takita, E., Harada, H., Sakurai, N., Suzuki, H., Ohyama, K., … Misawa, N. (2009). Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. Journal of Experimental Botany, 60(4), 1319-1332. doi:10.1093/jxb/erp006 | es_ES |
dc.description.references | Dafny-Yelin, M., & Tzfira, T. (2007). Delivery of Multiple Transgenes to Plant Cells. Plant Physiology, 145(4), 1118-1128. doi:10.1104/pp.107.106104 | es_ES |
dc.description.references | Goderis, I. J. W. M., De Bolle, M. F. C., François, I. E. J. A., Wouters, P. F. J., Broekaert, W. F., & Cammue, B. P. A. (2002). Plant Molecular Biology, 50(1), 17-27. doi:10.1023/a:1016052416053 | es_ES |
dc.description.references | Chen, Q.-J., Xie, M., Ma, X.-X., Dong, L., Chen, J., & Wang, X.-C. (2010). MISSA Is a Highly Efficient in Vivo DNA Assembly Method for Plant Multiple-Gene Transformation. Plant Physiology, 153(1), 41-51. doi:10.1104/pp.109.152249 | es_ES |
dc.description.references | Castilho, A., Strasser, R., Stadlmann, J., Grass, J., Jez, J., Gattinger, P., … Steinkellner, H. (2010). In PlantaProtein Sialylation through Overexpression of the Respective Mammalian Pathway. Journal of Biological Chemistry, 285(21), 15923-15930. doi:10.1074/jbc.m109.088401 | es_ES |
dc.description.references | Hamilton, C. M. (1997). A binary-BAC system for plant transformation with high-molecular-weight DNA. Gene, 200(1-2), 107-116. doi:10.1016/s0378-1119(97)00388-0 | es_ES |
dc.description.references | Weber, E., Engler, C., Gruetzner, R., Werner, S., & Marillonnet, S. (2011). A Modular Cloning System for Standardized Assembly of Multigene Constructs. PLoS ONE, 6(2), e16765. doi:10.1371/journal.pone.0016765 | es_ES |
dc.description.references | Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., & Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 29(2), 149-153. doi:10.1038/nbt.1775 | es_ES |
dc.description.references | Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). Plant Molecular Biology, 42(6), 819-832. doi:10.1023/a:1006496308160 | es_ES |
dc.description.references | Wieland, W. H., Lammers, A., Schots, A., & Orzáez, D. V. (2006). Plant expression of chicken secretory antibodies derived from combinatorial libraries. Journal of Biotechnology, 122(3), 382-391. doi:10.1016/j.jbiotec.2005.12.020 | es_ES |