- -

DELLA -induced early transcriptional changes during etiolated development in Arabidopsis thaliana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

DELLA -induced early transcriptional changes during etiolated development in Arabidopsis thaliana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallego Bartolomé, Javier es_ES
dc.contributor.author Alabadí Diego, David es_ES
dc.contributor.author Blazquez Rodriguez, Miguel Angel es_ES
dc.date.accessioned 2013-04-30T14:55:58Z
dc.date.available 2013-04-30T14:55:58Z
dc.date.issued 2011
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/28366
dc.description.abstract The hormones gibberellins (GAs) control a wide variety of processes in plants, including stress and developmental responses. This task largely relies on the activity of the DELLA proteins, nuclear-localized transcriptional regulators that do not seem to have DNA binding capacity. The identification of early target genes of DELLA action is key not only to understand how GAs regulate physiological responses, but also to get clues about the molecular mechanisms by which DELLAs regulate gene expression. Here, we have investigated the global, early transcriptional response triggered by the Arabidopsis DELLA protein GAI during skotomorphogenesis, a developmental program tightly regulated by GAs. Our results show that the induction of GAI activity has an almost immediate effect on gene expression. Although this transcriptional regulation is largely mediated by the PIFs and HY5 transcription factors based on target meta-analysis, additional evidence points to other transcription factors that would be directly involved in DELLA regulation of gene expression. First, we have identified cis elements recognized by Dofs and type-B ARRs among the sequences enriched in the promoters of GAI targets; and second, an enrichment in additional cis elements appeared when this analysis was extended to a dataset of early targets of the DELLA protein RGA: CArG boxes, bound by MADS-box proteins, and the E-box CACATG that links the activity of DELLAs to circadian transcriptional regulation. Finally, Gene Ontology analysis highlights the impact of DELLA regulation upon the homeostasis of the GA, auxin, and ethylene pathways, as well as upon pre-existing transcriptional networks. es_ES
dc.description.sponsorship Work in the laboratory of Dr. Blazquez and Dr. Alabadi is supported by grants from the Spanish Ministry of Science and Innovation (BIO2007-60293 and Consolider-TRANSPLANTA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation Spanish Ministry of Science and Innovation (BIO2007-60293 and Consolider-TRANSPLANTA). es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.title DELLA -induced early transcriptional changes during etiolated development in Arabidopsis thaliana es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0023918
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gallego Bartolomé, J.; Alabadí Diego, D.; Blazquez Rodriguez, MA. (2011). DELLA -induced early transcriptional changes during etiolated development in Arabidopsis thaliana. PLoS ONE. 6:23918-23918. doi:10.1371/journal.pone.0023918 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.plosone.org/article/info:doi/10.1371/journal.pone.0023918 es_ES
dc.description.upvformatpinicio 23918 es_ES
dc.description.upvformatpfin 23918 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 211847
dc.identifier.pmid 21904598 en_EN
dc.identifier.pmcid PMC3164146 en_EN
dc.description.references Jaillais, Y., & Chory, J. (2010). Unraveling the paradoxes of plant hormone signaling integration. Nature Structural & Molecular Biology, 17(6), 642-645. doi:10.1038/nsmb0610-642 es_ES
dc.description.references Alabadi, D., Blazquez, M. A., Carbonell, J., Ferrandiz, C., & Perez-Amador, M. A. (2009). Instructive roles for hormones in plant development. The International Journal of Developmental Biology, 53(8-9-10), 1597-1608. doi:10.1387/ijdb.072423da es_ES
dc.description.references Yamaguchi, S. (2008). Gibberellin Metabolism and its Regulation. Annual Review of Plant Biology, 59(1), 225-251. doi:10.1146/annurev.arplant.59.032607.092804 es_ES
dc.description.references Hou, X., Hu, W.-W., Shen, L., Lee, L. Y. C., Tao, Z., Han, J.-H., & Yu, H. (2008). Global Identification of DELLA Target Genes during Arabidopsis Flower Development. Plant Physiology, 147(3), 1126-1142. doi:10.1104/pp.108.121301 es_ES
dc.description.references Cao, D., Cheng, H., Wu, W., Soo, H. M., & Peng, J. (2006). Gibberellin Mobilizes Distinct DELLA-Dependent Transcriptomes to Regulate Seed Germination and Floral Development in Arabidopsis. Plant Physiology, 142(2), 509-525. doi:10.1104/pp.106.082289 es_ES
dc.description.references Zentella, R., Zhang, Z.-L., Park, M., Thomas, S. G., Endo, A., Murase, K., … Sun, T. (2007). Global Analysis of DELLA Direct Targets in Early Gibberellin Signaling in Arabidopsis. The Plant Cell, 19(10), 3037-3057. doi:10.1105/tpc.107.054999 es_ES
dc.description.references Ogawa, M., Hanada, A., Yamauchi, Y., Kuwahara, A., Kamiya, Y., & Yamaguchi, S. (2003). Gibberellin Biosynthesis and Response during Arabidopsis Seed Germination. The Plant Cell, 15(7), 1591-1604. doi:10.1105/tpc.011650 es_ES
dc.description.references Harberd, N. P., Belfield, E., & Yasumura, Y. (2009). The Angiosperm Gibberellin-GID1-DELLA Growth Regulatory Mechanism: How an «Inhibitor of an Inhibitor» Enables Flexible Response to Fluctuating Environments. The Plant Cell, 21(5), 1328-1339. doi:10.1105/tpc.109.066969 es_ES
dc.description.references Ueguchi-Tanaka, M., Ashikari, M., Nakajima, M., Itoh, H., Katoh, E., Kobayashi, M., … Matsuoka, M. (2005). GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 437(7059), 693-698. doi:10.1038/nature04028 es_ES
dc.description.references Shimada, A., Ueguchi-Tanaka, M., Nakatsu, T., Nakajima, M., Naoe, Y., Ohmiya, H., … Matsuoka, M. (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature, 456(7221), 520-523. doi:10.1038/nature07546 es_ES
dc.description.references Hirano, K., Asano, K., Tsuji, H., Kawamura, M., Mori, H., Kitano, H., … Matsuoka, M. (2010). Characterization of the Molecular Mechanism Underlying Gibberellin Perception Complex Formation in Rice. The Plant Cell, 22(8), 2680-2696. doi:10.1105/tpc.110.075549 es_ES
dc.description.references Fu, X., Richards, D. E., Ait-ali Tahar, Hynes, L. W., Ougham, H., Peng, J., & Harberd, N. P. (2002). Gibberellin-Mediated Proteasome-Dependent Degradation of the Barley DELLA Protein SLN1 Repressor. The Plant Cell, 14(12), 3191-3200. doi:10.1105/tpc.006197 es_ES
dc.description.references Itoh, H., Matsuoka, M., & Steber, C. M. (2003). A role for the ubiquitin–26S-proteasome pathway in gibberellin signaling. Trends in Plant Science, 8(10), 492-497. doi:10.1016/j.tplants.2003.08.002 es_ES
dc.description.references Zhang, Z.-L., Ogawa, M., Fleet, C. M., Zentella, R., Hu, J., Heo, J.-O., … Sun, T. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences, 108(5), 2160-2165. doi:10.1073/pnas.1012232108 es_ES
dc.description.references De Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520 es_ES
dc.description.references Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448 es_ES
dc.description.references Gallego-Bartolome, J., Minguet, E. G., Marin, J. A., Prat, S., Blazquez, M. A., & Alabadi, D. (2010). Transcriptional Diversification and Functional Conservation between DELLA Proteins in Arabidopsis. Molecular Biology and Evolution, 27(6), 1247-1256. doi:10.1093/molbev/msq012 es_ES
dc.description.references Arnaud, N., Girin, T., Sorefan, K., Fuentes, S., Wood, T. A., Lawrenson, T., … Ostergaard, L. (2010). Gibberellins control fruit patterning in Arabidopsis thaliana. Genes & Development, 24(19), 2127-2132. doi:10.1101/gad.593410 es_ES
dc.description.references Hou, X., Lee, L. Y. C., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs Modulate Jasmonate Signaling via Competitive Binding to JAZs. Developmental Cell, 19(6), 884-894. doi:10.1016/j.devcel.2010.10.024 es_ES
dc.description.references Heo, J.-O., Chang, K. S., Kim, I. A., Lee, M.-H., Lee, S. A., Song, S.-K., … Lim, J. (2011). Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in theArabidopsisroot. Proceedings of the National Academy of Sciences, 108(5), 2166-2171. doi:10.1073/pnas.1012215108 es_ES
dc.description.references Alabadí, D., Gallego-Bartolomé, J., Orlando, L., García-Cárcel, L., Rubio, V., Martínez, C., … Blázquez, M. A. (2007). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. The Plant Journal, 53(2), 324-335. doi:10.1111/j.1365-313x.2007.03346.x es_ES
dc.description.references Alabadí, D., Gil, J., Blázquez, M. A., & García-Martínez, J. L. (2004). Gibberellins Repress Photomorphogenesis in Darkness. Plant Physiology, 134(3), 1050-1057. doi:10.1104/pp.103.035451 es_ES
dc.description.references Cheminant, S., Wild, M., Bouvier, F., Pelletier, S., Renou, J.-P., Erhardt, M., … Achard, P. (2011). DELLAs Regulate Chlorophyll and Carotenoid Biosynthesis to Prevent Photooxidative Damage during Seedling Deetiolation in Arabidopsis. The Plant Cell, 23(5), 1849-1860. doi:10.1105/tpc.111.085233 es_ES
dc.description.references Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses . Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194 es_ES
dc.description.references Dill, A., Jung, H.-S., & Sun, T. -p. (2001). The DELLA motif is essential for gibberellin-induced degradation of RGA. Proceedings of the National Academy of Sciences, 98(24), 14162-14167. doi:10.1073/pnas.251534098 es_ES
dc.description.references Arana, M. V., Marin-de la Rosa, N., Maloof, J. N., Blazquez, M. A., & Alabadi, D. (2011). Circadian oscillation of gibberellin signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 108(22), 9292-9297. doi:10.1073/pnas.1101050108 es_ES
dc.description.references Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498 es_ES
dc.description.references Alabadí, D., & Blázquez, M. A. (2008). Molecular interactions between light and hormone signaling to control plant growth. Plant Molecular Biology, 69(4), 409-417. doi:10.1007/s11103-008-9400-y es_ES
dc.description.references Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., … Deng, X. W. (2007). Analysis of Transcription Factor HY5 Genomic Binding Sites Revealed Its Hierarchical Role in Light Regulation of Development. The Plant Cell, 19(3), 731-749. doi:10.1105/tpc.106.047688 es_ES
dc.description.references Leivar, P., Tepperman, J. M., Monte, E., Calderon, R. H., Liu, T. L., & Quail, P. H. (2009). Definition of Early Transcriptional Circuitry Involved in Light-Induced Reversal of PIF-Imposed Repression of Photomorphogenesis in Young Arabidopsis Seedlings. The Plant Cell, 21(11), 3535-3553. doi:10.1105/tpc.109.070672 es_ES
dc.description.references Kim, K., Shin, J., Lee, S.-H., Kweon, H.-S., Maloof, J. N., & Choi, G. (2011). Phytochromes inhibit hypocotyl negative gravitropism by regulating the development of endodermal amyloplasts through phytochrome-interacting factors. Proceedings of the National Academy of Sciences, 108(4), 1729-1734. doi:10.1073/pnas.1011066108 es_ES
dc.description.references Nemhauser, J. L., Mockler, T. C., & Chory, J. (2004). Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis. PLoS Biology, 2(9), e258. doi:10.1371/journal.pbio.0020258 es_ES
dc.description.references Yanagisawa, S. (2004). Dof Domain Proteins: Plant-Specific Transcription Factors Associated with Diverse Phenomena Unique to Plants. Plant and Cell Physiology, 45(4), 386-391. doi:10.1093/pcp/pch055 es_ES
dc.description.references Sakai, H., Aoyama, T., & Oka, A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. The Plant Journal, 24(6), 703-711. doi:10.1046/j.1365-313x.2000.00909.x es_ES
dc.description.references Mena, M., Cejudo, F. J., Isabel-Lamoneda, I., & Carbonero, P. (2002). A Role for the DOF Transcription Factor BPBF in the Regulation of Gibberellin-Responsive Genes in Barley Aleurone. Plant Physiology, 130(1), 111-119. doi:10.1104/pp.005561 es_ES
dc.description.references Zou, X., Neuman, D., & Shen, Q. J. (2008). Interactions of Two Transcriptional Repressors and Two Transcriptional Activators in Modulating Gibberellin Signaling in Aleurone Cells. Plant Physiology, 148(1), 176-186. doi:10.1104/pp.108.123653 es_ES
dc.description.references Gabriele, S., Rizza, A., Martone, J., Circelli, P., Costantino, P., & Vittorioso, P. (2009). The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. The Plant Journal, 61(2), 312-323. doi:10.1111/j.1365-313x.2009.04055.x es_ES
dc.description.references Moubayidin, L., Perilli, S., Dello Ioio, R., Di Mambro, R., Costantino, P., & Sabatini, S. (2010). The Rate of Cell Differentiation Controls the Arabidopsis Root Meristem Growth Phase. Current Biology, 20(12), 1138-1143. doi:10.1016/j.cub.2010.05.035 es_ES
dc.description.references Giuliano, G., Pichersky, E., Malik, V. S., Timko, M. P., Scolnik, P. A., & Cashmore, A. R. (1988). An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proceedings of the National Academy of Sciences, 85(19), 7089-7093. doi:10.1073/pnas.85.19.7089 es_ES
dc.description.references Riechmann, J. L., Krizek, B. A., & Meyerowitz, E. M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences, 93(10), 4793-4798. doi:10.1073/pnas.93.10.4793 es_ES
dc.description.references Foster, R., Izawa, T., & Chua, N. H. (1994). Plant bZIP proteins gather at ACGT elements. The FASEB Journal, 8(2), 192-200. doi:10.1096/fasebj.8.2.8119490 es_ES
dc.description.references Huq, E. (2002). PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal, 21(10), 2441-2450. doi:10.1093/emboj/21.10.2441 es_ES
dc.description.references Sun, Y., Fan, X.-Y., Cao, D.-M., Tang, W., He, K., Zhu, J.-Y., … Wang, Z.-Y. (2010). Integration of Brassinosteroid Signal Transduction with the Transcription Network for Plant Growth Regulation in Arabidopsis. Developmental Cell, 19(5), 765-777. doi:10.1016/j.devcel.2010.10.010 es_ES
dc.description.references Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., … Yin, Y. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65(4), 634-646. doi:10.1111/j.1365-313x.2010.04449.x es_ES
dc.description.references Michael, T. P., Breton, G., Hazen, S. P., Priest, H., Mockler, T. C., Kay, S. A., & Chory, J. (2008). A Morning-Specific Phytohormone Gene Expression Program underlying Rhythmic Plant Growth. PLoS Biology, 6(9), e225. doi:10.1371/journal.pbio.0060225 es_ES
dc.description.references Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., … Sherlock, G. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29. doi:10.1038/75556 es_ES
dc.description.references Al-Shahrour, F., Diaz-Uriarte, R., & Dopazo, J. (2005). Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics, 21(13), 2988-2993. doi:10.1093/bioinformatics/bti457 es_ES
dc.description.references Hedden, P., & Phillips, A. L. (2000). Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science, 5(12), 523-530. doi:10.1016/s1360-1385(00)01790-8 es_ES
dc.description.references Griffiths, J., Murase, K., Rieu, I., Zentella, R., Zhang, Z.-L., Powers, S. J., … Thomas, S. G. (2006). Genetic Characterization and Functional Analysis of the GID1 Gibberellin Receptors in Arabidopsis. The Plant Cell, 18(12), 3399-3414. doi:10.1105/tpc.106.047415 es_ES
dc.description.references Gallego-Bartolomé, J., Kami, C., Fankhauser, C., Alabadí, D., & Blázquez, M. A. (2011). A Hormonal Regulatory Module That Provides Flexibility to Tropic Responses. Plant Physiology, 156(4), 1819-1825. doi:10.1104/pp.111.173971 es_ES
dc.description.references Silverstone, A. L., Ciampaglio, C. N., & Sun, T. (1998). The Arabidopsis RGA Gene Encodes a Transcriptional Regulator Repressing the Gibberellin Signal Transduction Pathway. The Plant Cell, 10(2), 155-169. doi:10.1105/tpc.10.2.155 es_ES
dc.description.references Tatematsu, K., Kumagai, S., Muto, H., Sato, A., Watahiki, M. K., Harper, R. M., … Yamamoto, K. T. (2004). MASSUGU2 Encodes Aux/IAA19, an Auxin-Regulated Protein That Functions Together with the Transcriptional Activator NPH4/ARF7 to Regulate Differential Growth Responses of Hypocotyl and Formation of Lateral Roots in Arabidopsis thaliana. The Plant Cell, 16(2), 379-393. doi:10.1105/tpc.018630 es_ES
dc.description.references Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959 es_ES
dc.description.references Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., … Qu, L.-J. (2007). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 27(3), 575-584. doi:10.1007/s00299-007-0458-9 es_ES
dc.description.references Zhao, Y. (2001). A Role for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis. Science, 291(5502), 306-309. doi:10.1126/science.291.5502.306 es_ES
dc.description.references Vogel, J. P., Woeste, K. E., Theologis, A., & Kieber, J. J. (1998). Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proceedings of the National Academy of Sciences, 95(8), 4766-4771. doi:10.1073/pnas.95.8.4766 es_ES
dc.description.references Yamagami, T., Tsuchisaka, A., Yamada, K., Haddon, W. F., Harden, L. A., & Theologis, A. (2003). Biochemical Diversity among the 1-Amino-cyclopropane-1-Carboxylate Synthase Isozymes Encoded by theArabidopsisGene Family. Journal of Biological Chemistry, 278(49), 49102-49112. doi:10.1074/jbc.m308297200 es_ES
dc.description.references Nemhauser, J. L., Hong, F., & Chory, J. (2006). Different Plant Hormones Regulate Similar Processes through Largely Nonoverlapping Transcriptional Responses. Cell, 126(3), 467-475. doi:10.1016/j.cell.2006.05.050 es_ES
dc.description.references Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis. The Plant Cell, 12(12), 2383-2393. doi:10.1105/tpc.12.12.2383 es_ES
dc.description.references Weiss, D., van der Luit, A., Knegt, E., Vermeer, E., Mol, J., & Kooter, J. M. (1995). Identification of Endogenous Gibberellins in Petunia Flowers (Induction of Anthocyanin Biosynthetic Gene Expression and the Antagonistic Effect of Abscisic Acid). Plant Physiology, 107(3), 695-702. doi:10.1104/pp.107.3.695 es_ES
dc.description.references Martínez, G. A., Chaves, A. R., & Añón, M. C. (1996). Effect of exogenous application of gibberellic acid on color change and phenylalanine ammonia-lyase, chlorophyllase, and peroxidase activities during ripening of strawberry fruit (Fragaria x ananassa Duch.). Journal of Plant Growth Regulation, 15(3), 139-146. doi:10.1007/bf00198929 es_ES
dc.description.references Loreti, E., Povero, G., Novi, G., Solfanelli, C., Alpi, A., & Perata, P. (2008). Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes inArabidopsis. New Phytologist, 179(4), 1004-1016. doi:10.1111/j.1469-8137.2008.02511.x es_ES
dc.description.references Jiang, C., Gao, X., Liao, L., Harberd, N. P., & Fu, X. (2007). Phosphate Starvation Root Architecture and Anthocyanin Accumulation Responses Are Modulated by the Gibberellin-DELLA Signaling Pathway in Arabidopsis. Plant Physiology, 145(4), 1460-1470. doi:10.1104/pp.107.103788 es_ES
dc.description.references Lee, S., Lee, S., Yang, K.-Y., Kim, Y.-M., Park, S.-Y., Kim, S. Y., & Soh, M.-S. (2006). Overexpression of PRE1 and its Homologous Genes Activates Gibberellin-dependent Responses in Arabidopsis thaliana. Plant and Cell Physiology, 47(5), 591-600. doi:10.1093/pcp/pcj026 es_ES
dc.description.references Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., & Fankhauser, C. (2009). Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. The EMBO Journal, 28(24), 3893-3902. doi:10.1038/emboj.2009.306 es_ES
dc.description.references CASAL, J. (2004). Signalling for developmental plasticity. Trends in Plant Science, 9(6), 309-314. doi:10.1016/j.tplants.2004.04.007 es_ES
dc.description.references Kuppusamy, K. T., Walcher, C. L., & Nemhauser, J. L. (2008). Cross-regulatory mechanisms in hormone signaling. Plant Molecular Biology, 69(4), 375-381. doi:10.1007/s11103-008-9389-2 es_ES
dc.description.references Frigerio, M., Alabadí, D., Pérez-Gómez, J., García-Cárcel, L., Phillips, A. L., Hedden, P., & Blázquez, M. A. (2006). Transcriptional Regulation of Gibberellin Metabolism Genes by Auxin Signaling in Arabidopsis. Plant Physiology, 142(2), 553-563. doi:10.1104/pp.106.084871 es_ES
dc.description.references Bueso, E., Alejandro, S., Carbonell, P., Perez-Amador, M. A., Fayos, J., Bellés, J. M., … Serrano, R. (2007). The lithium tolerance of the Arabidopsiscat2mutant reveals a cross-talk between oxidative stress and ethylene. The Plant Journal, 52(6), 1052-1065. doi:10.1111/j.1365-313x.2007.03305.x es_ES
dc.description.references Stavang, J. A., Gallego-Bartolomé, J., Gómez, M. D., Yoshida, S., Asami, T., Olsen, J. E., … Blázquez, M. A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. The Plant Journal, 60(4), 589-601. doi:10.1111/j.1365-313x.2009.03983.x es_ES
dc.description.references Crooks, G. E. (2004). WebLogo: A Sequence Logo Generator. Genome Research, 14(6), 1188-1190. doi:10.1101/gr.849004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem