- -

Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gómez Jiménez, Maria Dolores es_ES
dc.contributor.author Urbez Lagunas, Cristina es_ES
dc.contributor.author Perez Amador, Miguel Angel es_ES
dc.contributor.author Carbonell Gisbert, Juan es_ES
dc.date.accessioned 2013-05-02T10:38:34Z
dc.date.available 2013-05-02T10:38:34Z
dc.date.issued 2011-04-13
dc.identifier.issn 1932-6203
dc.identifier.uri http://hdl.handle.net/10251/28387
dc.description.abstract Pistil and fruit morphogenesis is the result of a complex gene network that is not yet fully understood. A search for novel genes is needed to make a more comprehensive model of pistil and fruit development. Screening for mutants with alterations in fruit morphology generated by an activation tagging strategy resulted in the isolation of the ctf (constricted fruit) mutant. It is characterized by a) small and wrinkled fruits, with an enlarged replum, an amorphous structure of the septum and an irregular distribution of ovules and seeds; b) ectopic carpelloid structures in sepals bearing ovule-like structures and c) dwarf plants with curled rosette leaves. The overexpressed gene in ctf was AtMYB117, also named LOF1 (LATERAL ORGAN FUSION1). AtMYB117/LOF1 transcripts were localized in boundary regions of the vegetative shoot apical meristem and leaf primordia and in a group of cells in the adaxial base of petioles and bracts. Transcripts were also detected in the boundaries between each of the four floral whorls and during pistil development in the inner of the medial ridges, the placenta, the base of the ovule primordia, the epidermis of the developing septum and the outer cell layers of the ovule funiculi. Analysis of changes of expression of pistil-related genes in the ctf mutant showed an enhancement of SHATTERPROOF1 (SHP1) and SHP2 expression. All these results suggest that AtMYB117/LOF1 is recruited by a variety of developmental programs for the establishment of boundary regions, including the development of floral organs and the initiation of ovule outgrowth. es_ES
dc.description.sponsorship This work was funded by the Spanish Ministry of Science and Innovation (grants BIO2005-07156-C02-01 and BIO2008-01039). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. en_EN
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.title Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0018760
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2005-07156-C02-01 / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2008-01039/ES/ANALISIS DE LA COORDINACION DE LOS PROGRAMAS DE DESARROLLO DE SEMILLAS Y FRUTOS DURANTE LA FRUCTIFICACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gómez Jiménez, MD.; Urbez Lagunas, C.; Perez Amador, MA.; Carbonell Gisbert, J. (2011). Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana. PLoS ONE. 6(4):18760-18760. doi:10.1371/journal.pone.0018760 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018760 es_ES
dc.description.upvformatpinicio 18760 es_ES
dc.description.upvformatpfin 18760 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 213030
dc.identifier.pmid 21533201 en_EN
dc.identifier.pmcid PMC3076444 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Girin, T., Sorefan, K., & Ostergaard, L. (2009). Meristematic sculpting in fruit development. Journal of Experimental Botany, 60(5), 1493-1502. doi:10.1093/jxb/erp031 es_ES
dc.description.references Kelley, D. R., & Gasser, C. S. (2009). Ovule development: genetic trends and evolutionary considerations. Sexual Plant Reproduction, 22(4), 229-234. doi:10.1007/s00497-009-0107-2 es_ES
dc.description.references Aida, M., & Tasaka, M. (2006). Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex. Plant Molecular Biology, 60(6), 915-928. doi:10.1007/s11103-005-2760-7 es_ES
dc.description.references Roeder, A. H. K., & Yanofsky, M. F. (2006). Fruit Development in Arabidopsis. The Arabidopsis Book, 4, e0075. doi:10.1199/tab.0075 es_ES
dc.description.references Balanza, V., Navarrete, M., Trigueros, M., & Ferrandiz, C. (2006). Patterning the female side of Arabidopsis: the importance of hormones. Journal of Experimental Botany, 57(13), 3457-3469. doi:10.1093/jxb/erl188 es_ES
dc.description.references Weigel, D., Ahn, J. H., Blázquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., … Chory, J. (2000). Activation Tagging in Arabidopsis. Plant Physiology, 122(4), 1003-1014. doi:10.1104/pp.122.4.1003 es_ES
dc.description.references Kuromori, T., Takahashi, S., Kondou, Y., Shinozaki, K., & Matsui, M. (2009). Phenome Analysis in Plant Species Using Loss-of-Function and Gain-of-Function Mutants. Plant and Cell Physiology, 50(7), 1215-1231. doi:10.1093/pcp/pcp078 es_ES
dc.description.references Stracke, R., Werber, M., & Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4(5), 447-456. doi:10.1016/s1369-5266(00)00199-0 es_ES
dc.description.references Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15(10), 573-581. doi:10.1016/j.tplants.2010.06.005 es_ES
dc.description.references Lee, D.-K., Geisler, M., & Springer, P. S. (2009). LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 136(14), 2423-2432. doi:10.1242/dev.031971 es_ES
dc.description.references Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. The Plant Cell, 18(5), 1121-1133. doi:10.1105/tpc.105.039834 es_ES
dc.description.references Groszmann, M., Bylstra, Y., Lampugnani, E. R., & Smyth, D. R. (2010). Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. Journal of Experimental Botany, 61(5), 1495-1508. doi:10.1093/jxb/erq015 es_ES
dc.description.references Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089 es_ES
dc.description.references Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043 es_ES
dc.description.references Roeder, A. H. K., Ferrándiz, C., & Yanofsky, M. F. (2003). The Role of the REPLUMLESS Homeodomain Protein in Patterning the Arabidopsis Fruit. Current Biology, 13(18), 1630-1635. doi:10.1016/j.cub.2003.08.027 es_ES
dc.description.references Alonso-Cantabrana, H., Ripoll, J. J., Ochando, I., Vera, A., Ferrandiz, C., & Martinez-Laborda, A. (2007). Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development, 134(14), 2663-2671. doi:10.1242/dev.02864 es_ES
dc.description.references Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., … Colombo, L. (2003). MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. The Plant Cell, 15(11), 2603-2611. doi:10.1105/tpc.015123 es_ES
dc.description.references Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741 es_ES
dc.description.references Ishida, T., Aida, M., Takada, S., & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 41(1), 60-67. doi:10.1093/pcp/41.1.60 es_ES
dc.description.references Borghi, L., Bureau, M., & Simon, R. (2007). Arabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity. The Plant Cell, 19(6), 1795-1808. doi:10.1105/tpc.106.047159 es_ES
dc.description.references Majer, C., & Hochholdinger, F. (2011). Defining the boundaries: structure and function of LOB domain proteins. Trends in Plant Science, 16(1), 47-52. doi:10.1016/j.tplants.2010.09.009 es_ES
dc.description.references Savidge, B., Rounsley, S. D., & Yanofsky, M. F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7(6), 721-733. doi:10.1105/tpc.7.6.721 es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3 es_ES
dc.description.references Bensmihen, S., To, A., Lambert, G., Kroj, T., Giraudat, J., & Parcy, F. (2004). Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Letters, 561(1-3), 127-131. doi:10.1016/s0014-5793(04)00148-6 es_ES
dc.description.references Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x es_ES
dc.description.references Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743 es_ES
dc.description.references G�mez, M. D., Beltr�n, J.-P., & Ca�as, L. A. (2004). The pea END1 promoter drives anther-specific gene expression in different plant species. Planta, 219(6), 967-981. doi:10.1007/s00425-004-1300-z es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem