Mostrar el registro sencillo del ítem
dc.contributor.author | Gómez Jiménez, Maria Dolores | es_ES |
dc.contributor.author | Urbez Lagunas, Cristina | es_ES |
dc.contributor.author | Perez Amador, Miguel Angel | es_ES |
dc.contributor.author | Carbonell Gisbert, Juan | es_ES |
dc.date.accessioned | 2013-05-02T10:38:34Z | |
dc.date.available | 2013-05-02T10:38:34Z | |
dc.date.issued | 2011-04-13 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/28387 | |
dc.description.abstract | Pistil and fruit morphogenesis is the result of a complex gene network that is not yet fully understood. A search for novel genes is needed to make a more comprehensive model of pistil and fruit development. Screening for mutants with alterations in fruit morphology generated by an activation tagging strategy resulted in the isolation of the ctf (constricted fruit) mutant. It is characterized by a) small and wrinkled fruits, with an enlarged replum, an amorphous structure of the septum and an irregular distribution of ovules and seeds; b) ectopic carpelloid structures in sepals bearing ovule-like structures and c) dwarf plants with curled rosette leaves. The overexpressed gene in ctf was AtMYB117, also named LOF1 (LATERAL ORGAN FUSION1). AtMYB117/LOF1 transcripts were localized in boundary regions of the vegetative shoot apical meristem and leaf primordia and in a group of cells in the adaxial base of petioles and bracts. Transcripts were also detected in the boundaries between each of the four floral whorls and during pistil development in the inner of the medial ridges, the placenta, the base of the ovule primordia, the epidermis of the developing septum and the outer cell layers of the ovule funiculi. Analysis of changes of expression of pistil-related genes in the ctf mutant showed an enhancement of SHATTERPROOF1 (SHP1) and SHP2 expression. All these results suggest that AtMYB117/LOF1 is recruited by a variety of developmental programs for the establishment of boundary regions, including the development of floral organs and the initiation of ovule outgrowth. | es_ES |
dc.description.sponsorship | This work was funded by the Spanish Ministry of Science and Innovation (grants BIO2005-07156-C02-01 and BIO2008-01039). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0018760 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2005-07156-C02-01 / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2008-01039/ES/ANALISIS DE LA COORDINACION DE LOS PROGRAMAS DE DESARROLLO DE SEMILLAS Y FRUTOS DURANTE LA FRUCTIFICACION/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Gómez Jiménez, MD.; Urbez Lagunas, C.; Perez Amador, MA.; Carbonell Gisbert, J. (2011). Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana. PLoS ONE. 6(4):18760-18760. doi:10.1371/journal.pone.0018760 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018760 | es_ES |
dc.description.upvformatpinicio | 18760 | es_ES |
dc.description.upvformatpfin | 18760 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 213030 | |
dc.identifier.pmid | 21533201 | en_EN |
dc.identifier.pmcid | PMC3076444 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Girin, T., Sorefan, K., & Ostergaard, L. (2009). Meristematic sculpting in fruit development. Journal of Experimental Botany, 60(5), 1493-1502. doi:10.1093/jxb/erp031 | es_ES |
dc.description.references | Kelley, D. R., & Gasser, C. S. (2009). Ovule development: genetic trends and evolutionary considerations. Sexual Plant Reproduction, 22(4), 229-234. doi:10.1007/s00497-009-0107-2 | es_ES |
dc.description.references | Aida, M., & Tasaka, M. (2006). Morphogenesis and Patterning at the Organ Boundaries in the Higher Plant Shoot Apex. Plant Molecular Biology, 60(6), 915-928. doi:10.1007/s11103-005-2760-7 | es_ES |
dc.description.references | Roeder, A. H. K., & Yanofsky, M. F. (2006). Fruit Development in Arabidopsis. The Arabidopsis Book, 4, e0075. doi:10.1199/tab.0075 | es_ES |
dc.description.references | Balanza, V., Navarrete, M., Trigueros, M., & Ferrandiz, C. (2006). Patterning the female side of Arabidopsis: the importance of hormones. Journal of Experimental Botany, 57(13), 3457-3469. doi:10.1093/jxb/erl188 | es_ES |
dc.description.references | Weigel, D., Ahn, J. H., Blázquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., … Chory, J. (2000). Activation Tagging in Arabidopsis. Plant Physiology, 122(4), 1003-1014. doi:10.1104/pp.122.4.1003 | es_ES |
dc.description.references | Kuromori, T., Takahashi, S., Kondou, Y., Shinozaki, K., & Matsui, M. (2009). Phenome Analysis in Plant Species Using Loss-of-Function and Gain-of-Function Mutants. Plant and Cell Physiology, 50(7), 1215-1231. doi:10.1093/pcp/pcp078 | es_ES |
dc.description.references | Stracke, R., Werber, M., & Weisshaar, B. (2001). The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4(5), 447-456. doi:10.1016/s1369-5266(00)00199-0 | es_ES |
dc.description.references | Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C., & Lepiniec, L. (2010). MYB transcription factors in Arabidopsis. Trends in Plant Science, 15(10), 573-581. doi:10.1016/j.tplants.2010.06.005 | es_ES |
dc.description.references | Lee, D.-K., Geisler, M., & Springer, P. S. (2009). LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2 function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 136(14), 2423-2432. doi:10.1242/dev.031971 | es_ES |
dc.description.references | Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. The Plant Cell, 18(5), 1121-1133. doi:10.1105/tpc.105.039834 | es_ES |
dc.description.references | Groszmann, M., Bylstra, Y., Lampugnani, E. R., & Smyth, D. R. (2010). Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis. Journal of Experimental Botany, 61(5), 1495-1508. doi:10.1093/jxb/erq015 | es_ES |
dc.description.references | Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089 | es_ES |
dc.description.references | Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043 | es_ES |
dc.description.references | Roeder, A. H. K., Ferrándiz, C., & Yanofsky, M. F. (2003). The Role of the REPLUMLESS Homeodomain Protein in Patterning the Arabidopsis Fruit. Current Biology, 13(18), 1630-1635. doi:10.1016/j.cub.2003.08.027 | es_ES |
dc.description.references | Alonso-Cantabrana, H., Ripoll, J. J., Ochando, I., Vera, A., Ferrandiz, C., & Martinez-Laborda, A. (2007). Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development, 134(14), 2663-2671. doi:10.1242/dev.02864 | es_ES |
dc.description.references | Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., … Colombo, L. (2003). MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. The Plant Cell, 15(11), 2603-2611. doi:10.1105/tpc.015123 | es_ES |
dc.description.references | Pinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741 | es_ES |
dc.description.references | Ishida, T., Aida, M., Takada, S., & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 41(1), 60-67. doi:10.1093/pcp/41.1.60 | es_ES |
dc.description.references | Borghi, L., Bureau, M., & Simon, R. (2007). Arabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity. The Plant Cell, 19(6), 1795-1808. doi:10.1105/tpc.106.047159 | es_ES |
dc.description.references | Majer, C., & Hochholdinger, F. (2011). Defining the boundaries: structure and function of LOB domain proteins. Trends in Plant Science, 16(1), 47-52. doi:10.1016/j.tplants.2010.09.009 | es_ES |
dc.description.references | Savidge, B., Rounsley, S. D., & Yanofsky, M. F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7(6), 721-733. doi:10.1105/tpc.7.6.721 | es_ES |
dc.description.references | Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x | es_ES |
dc.description.references | Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x | es_ES |
dc.description.references | Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3 | es_ES |
dc.description.references | Bensmihen, S., To, A., Lambert, G., Kroj, T., Giraudat, J., & Parcy, F. (2004). Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Letters, 561(1-3), 127-131. doi:10.1016/s0014-5793(04)00148-6 | es_ES |
dc.description.references | Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.x | es_ES |
dc.description.references | Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743 | es_ES |
dc.description.references | G�mez, M. D., Beltr�n, J.-P., & Ca�as, L. A. (2004). The pea END1 promoter drives anther-specific gene expression in different plant species. Planta, 219(6), 967-981. doi:10.1007/s00425-004-1300-z | es_ES |