Trénor Gomis, BA.; Cardona Urrego, KE.; Gómez García, JF.; Rajamani, S.; Ferrero De Loma-Osorio, JM.; Belardinelli, L.; Saiz Rodríguez, FJ. (2012). Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure. PLoS ONE. 7(3):1-12. https://doi.org/10.1371/journal.pone.0032659
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/28574
Título:
|
Simulation and Mechanistic Investigation of the Arrhythmogenic Role of the Late Sodium Current in Human Heart Failure
|
Autor:
|
Trénor Gomis, Beatriz Ana
Cardona Urrego, Karen Eliana
Gómez García, Juan Francisco
Rajamani, Sridharan
Ferrero De Loma-Osorio, José María
Belardinelli, Luiz
Saiz Rodríguez, Francisco Javier
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
|
Fecha difusión:
|
|
Resumen:
|
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na + current (I NaL) is ...[+]
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na + current (I NaL) is relevant and is currently under investigation. In this study we examined the role of I NaL in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi etal. model for human ventricular action potential that incorporates the formulation of I NaL. A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human I NaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for I NaL in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca 2+ transient. A mechanistic investigation of intracellular Na + accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na +/K + pump, the Na +/Ca 2+ exchanger and I NaL. The results of the simulations also showed that in failing myocytes, the enhancement of I NaL increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the I NaL prolong APD and alter Ca 2+ transient facilitating the development of early afterdepolarizations. An enhanced I NaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca 2+] i homeostasis of failing myocytes. © 2012 Trenor et al.
[-]
|
Palabras clave:
|
Adenosine triphosphatase (potassium sodium)
,
Calcium ion
,
Ion channel
,
Sodium calcium exchange protein
,
Sodium
,
Arrhythmogenesis
,
Article
,
Calcium homeostasis
,
Controlled study
,
Electrophysiology
,
Enzyme regulation
,
Heart failure
,
Heart muscle cell
,
Heart muscle potential
,
Human
,
Human cell
,
Phenotype
,
Protein expression
,
Protein function
,
Sensitivity analysis
,
Sodium current
,
Action potential
,
Biological model
,
Computer simulation
,
Cytology
,
Heart arrhythmia
,
Heart ventricle
,
Heart ventricle remodeling
,
Metabolism
,
Muscle cell
,
Pathophysiology
,
Physiology
,
Action Potentials
,
Arrhythmias, Cardiac
,
Heart Ventricles
,
Humans
,
Models, Cardiovascular
,
Muscle Cells
,
Sodium-Calcium Exchanger
,
Sodium-Potassium-Exchanging ATPase
,
Ventricular Remodeling
|
Derechos de uso:
|
Reconocimiento (by)
|
Fuente:
|
PLoS ONE. (issn:
1932-6203
)
|
DOI:
|
10.1371/journal.pone.0032659
|
Editorial:
|
Public Library of Science
|
Versión del editor:
|
http://dx.doi.org/10.1371/journal.pone.0032659
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/EC/FP7/224381/EU/Computational Prediction of Drug Cardiac Toxicity/
info:eu-repo/grantAgreement/MICINN//TEC2008-02090/ES/MODELO MULTI-ESCALA DEL CORAZON. APLICACION EN LA PREVENCION, DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS/
info:eu-repo/grantAgreement/UPV//PAID-06-09-2843/
info:eu-repo/grantAgreement/UPV//PAID-06-11-2002/
info:eu-repo/grantAgreement/GVA//GV%2F2010%2F078/
|
Agradecimientos:
|
This work was partially supported by the European Commission preDiCT grant (DG-INFSO-224381), by the Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica del Ministerio de Ciencia e Innovacion of ...[+]
This work was partially supported by the European Commission preDiCT grant (DG-INFSO-224381), by the Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica del Ministerio de Ciencia e Innovacion of Spain (TEC2008-02090), by the Programa de Apoyo a la Investigacion y Desarrollo (PAID-06-09-2843, PAID-06-11-2002) de la Universidad Politecnica de Valencia, by the Direccion General de Politica Cientifica de la Generalitat Valenciana (GV/2010/078). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work was also supported by Gilead Sciences Palo Alto. Dr. Rajamani and Dr. Belardinelli are employees of Gilead Sciences and have collaborated in the study design and manuscript preparation. No additional external funding received for this study.
[-]
|
Tipo:
|
Artículo
|