Mostrar el registro sencillo del ítem
dc.contributor.author | Zarzo Castelló, Manuel | es_ES |
dc.contributor.author | Fernández Navajas, Angel | es_ES |
dc.contributor.author | García Diego, Fernando Juan | es_ES |
dc.date.accessioned | 2013-05-14T08:19:54Z | |
dc.date.available | 2013-05-14T08:19:54Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/28807 | |
dc.description.abstract | We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH) and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999). © 2011 by the authors; licensee MDPI, Basel, Switzerland. | es_ES |
dc.description.sponsorship | This work was partially supported by the Spanish "Ministerio de Ciencia e Innovacion" under projects HAR2010-21944-C02-01 and HAR2010-21944-C02-02. The authors are grateful to A. Munoz-Sanchez from the Environmental Area of our university for providing meteorological data and to Artechnology, S.L. for the help with the sensor development, installation and recalibration. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Art conservation | es_ES |
dc.subject | Diagnosis | es_ES |
dc.subject | Microclimate | es_ES |
dc.subject | Multivariate monitoring | es_ES |
dc.subject | Sensor | es_ES |
dc.subject | Art | es_ES |
dc.subject | Article | es_ES |
dc.subject | Humidity | es_ES |
dc.subject | Spain | es_ES |
dc.subject | Temperature | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s110908685 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//HAR2010-21944-C02-01/ES/CARACTERIZACION MICROCLIMATICA DE OBRAS DE ARTE ENFOCADA A LA CONSERVACION PREVENTIVA DE LAS MISMAS/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//HAR2010-21944-C02-02/ES/MONITORIZACION Y ESTUDIO DE DEGRADACION EN OBRAS DE ARTE ENFOCADO A LA CONSERVACION PREVENTIVA DE LAS MISMAS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Zarzo Castelló, M.; Fernández Navajas, Á.; García Diego, FJ. (2011). Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 11(9):8685-8710. doi:10.3390/s110908685 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.mdpi.com/1424-8220/11/9/8685 | es_ES |
dc.description.upvformatpinicio | 8685 | es_ES |
dc.description.upvformatpfin | 8710 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 205559 | |
dc.identifier.pmid | 22164100 | en_EN |
dc.identifier.pmcid | PMC3231476 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Camuffo, D., Bernardi, A., Sturaro, G., & Valentino, A. (2002). The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. Journal of Cultural Heritage, 3(2), 155-161. doi:10.1016/s1296-2074(02)01171-8 | es_ES |
dc.description.references | Tabunschikov, Y., & Brodatch, M. (2004). Indoor air climate requirements for Russian churches and cathedrals. Indoor Air, 14(s7), 168-174. doi:10.1111/j.1600-0668.2004.00285.x | es_ES |
dc.description.references | Camuffo, D., Sturaro, G., & Valentino, A. (1999). Thermodynamic exchanges between the external boundary layer and the indoor microclimate at the Basilica of Santa Maria Maggiore, Rome, Italy: the problem of conservation of ancient works of art. Boundary-Layer Meteorology, 92(2), 243-262. doi:10.1023/a:1002026711404 | es_ES |
dc.description.references | Vuerich, E., Malaspina, F., Barazutti, M., Georgiadis, T., & Nardino, M. (2008). Indoor measurements of microclimate variables and ozone in the church of San Vincenzo (Monastery of Bassano Romano — Italy): A pilot study. Microchemical Journal, 88(2), 218-223. doi:10.1016/j.microc.2007.11.014 | es_ES |
dc.description.references | LOUPA, G., CHARPANTIDOU, E., KIOUTSIOUKIS, I., & RAPSOMANIKIS, S. (2006). Indoor microclimate, ozone and nitrogen oxides in two medieval churches in Cyprus. Atmospheric Environment, 40(39), 7457-7466. doi:10.1016/j.atmosenv.2006.07.015 | es_ES |
dc.description.references | Brimblecombe, P., Blades, N., Camuffo, D., Sturaro, G., Valentino, A., Gysels, K., … Wieser, M. (1999). The Indoor Environment of a Modern Museum Building, The Sainsbury Centre for Visual Arts, Norwich, UK. Indoor Air, 9(3), 146-164. doi:10.1111/j.1600-0668.1999.t01-1-00002.x | es_ES |
dc.description.references | Camuffo, D., Brimblecombe, P., Van Grieken, R., Busse, H.-J., Sturaro, G., Valentino, A., … Kim, O. (1999). Indoor air quality at the Correr Museum, Venice, Italy. Science of The Total Environment, 236(1-3), 135-152. doi:10.1016/s0048-9697(99)00262-4 | es_ES |
dc.description.references | Camuffo, D. (2001). Environmental monitoring in four European museums. Atmospheric Environment, 35, 127-140. doi:10.1016/s1352-2310(01)00088-7 | es_ES |
dc.description.references | Gysels, K., Delalieux, F., Deutsch, F., Van Grieken, R., Camuffo, D., Bernardi, A., … Wieser, M. (2004). Indoor environment and conservation in the Royal Museum of Fine Arts, Antwerp, Belgium. Journal of Cultural Heritage, 5(2), 221-230. doi:10.1016/j.culher.2004.02.002 | es_ES |
dc.description.references | Sturaro, G., Camuffo, D., Brimblecombe, P., Grieken, R. V., Busse, H.-J., Bernardi, A., … Buczolits, S. (2003). Multidisciplinary Environmental Monitoring at the Kunsthistorisches Museum, Vienna. Journal of Trace and Microprobe Techniques, 21(2), 273-294. doi:10.1081/tma-120020262 | es_ES |
dc.description.references | Camuffo, D. (1983). Indoor dynamic climatology: Investigations on the interactions between walls and indoor environment. Atmospheric Environment (1967), 17(9), 1803-1809. doi:10.1016/0004-6981(83)90188-9 | es_ES |
dc.description.references | Camuffo, D., Pagan, E., Bernardi, A., & Becherini, F. (2004). The impact of heating, lighting and people in re-using historical buildings: a case study. Journal of Cultural Heritage, 5(4), 409-416. doi:10.1016/j.culher.2004.01.005 | es_ES |
dc.description.references | Camuffo, D., & Bernardi, A. (1995). Study of the Microclimate of the Hall of the Giants in the Carrara Palace in Padua. Studies in Conservation, 40(4), 237. doi:10.2307/1506498 | es_ES |
dc.description.references | Bernardi, A., Todorov, V., & Hiristova, J. (2000). Microclimatic analysis in St. Stephan’s church, Nessebar, Bulgaria after interventions for the conservation of frescoes. Journal of Cultural Heritage, 1(3), 281-286. doi:10.1016/s1296-2074(00)01084-0 | es_ES |
dc.description.references | García-Diego, F.-J., & Zarzo, M. (2010). Microclimate monitoring by multivariate statistical control: The renaissance frescoes of the Cathedral of Valencia (Spain). Journal of Cultural Heritage, 11(3), 339-344. doi:10.1016/j.culher.2009.06.002 | es_ES |
dc.description.references | Corgnati, S. P., & Filippi, M. (2010). Assessment of thermo-hygrometric quality in museums: Method and in-field application to the «Duccio di Buoninsegna» exhibition at Santa Maria della Scala (Siena, Italy). Journal of Cultural Heritage, 11(3), 345-349. doi:10.1016/j.culher.2009.05.003 | es_ES |
dc.description.references | Del Vescovo, D., & Fregolent, A. (2005). Assessment of fresco detachments through a non-invasive acoustic method. Journal of Sound and Vibration, 284(3-5), 1015-1031. doi:10.1016/j.jsv.2004.07.011 | es_ES |
dc.description.references | www.maxim-ic.com/an148 | es_ES |
dc.description.references | www.maxim-ic.com/an244 | es_ES |
dc.description.references | www.maxim-ic.com/an4206 | es_ES |
dc.description.references | Matsuguchi, M., Yoshida, M., Kuroiwa, T., & Ogura, T. (2004). Depression of a capacitive-type humidity sensor’s drift by introducing a cross-linked structure in the sensing polymer. Sensors and Actuators B: Chemical, 102(1), 97-101. doi:10.1016/j.snb.2003.12.061 | es_ES |
dc.description.references | Condensation in the Walls of Humidified Buildingshttp://www.conservationphysics.org/condens/condens1.php | es_ES |
dc.description.references | Zarzo, M., & Martí, P. (2011). Modeling the variability of solar radiation data among weather stations by means of principal components analysis. Applied Energy, 88(8), 2775-2784. doi:10.1016/j.apenergy.2011.01.070 | es_ES |
dc.description.references | Dunia, R., Joe Qin, S., Edgar, T. F., & McAvoy, T. J. (1996). Use of principal component analysis for sensor fault identification. Computers & Chemical Engineering, 20, S713-S718. doi:10.1016/0098-1354(96)00128-7 | es_ES |
dc.description.references | Zhu, D., Bai, J., & Yang, S. (2009). A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis. Sensors, 10(1), 241-253. doi:10.3390/s100100241 | es_ES |