- -

Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zarzo Castelló, Manuel es_ES
dc.contributor.author Fernández Navajas, Angel es_ES
dc.contributor.author García Diego, Fernando Juan es_ES
dc.date.accessioned 2013-05-14T08:19:54Z
dc.date.available 2013-05-14T08:19:54Z
dc.date.issued 2011
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/28807
dc.description.abstract We describe the performance of a microclimate monitoring system that was implemented for the preventive conservation of the Renaissance frescoes in the apse vault of the Cathedral of Valencia, that were restored in 2006. This system comprises 29 relative humidity (RH) and temperature sensors: 10 of them inserted into the plaster layer supporting the fresco paintings, 10 sensors in the walls close to the frescoes and nine sensors measuring the indoor microclimate at different points of the vault. Principal component analysis was applied to RH data recorded in 2007. The analysis was repeated with data collected in 2008 and 2010. The resulting loading plots revealed that the similarities and dissimilarities among sensors were approximately maintained along the three years. A physical interpretation was provided for the first and second principal components. Interestingly, sensors recording the highest RH values correspond to zones where humidity problems are causing formation of efflorescence. Recorded data of RH and temperature are discussed according to Italian Standard UNI 10829 (1999). © 2011 by the authors; licensee MDPI, Basel, Switzerland. es_ES
dc.description.sponsorship This work was partially supported by the Spanish "Ministerio de Ciencia e Innovacion" under projects HAR2010-21944-C02-01 and HAR2010-21944-C02-02. The authors are grateful to A. Munoz-Sanchez from the Environmental Area of our university for providing meteorological data and to Artechnology, S.L. for the help with the sensor development, installation and recalibration. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Art conservation es_ES
dc.subject Diagnosis es_ES
dc.subject Microclimate es_ES
dc.subject Multivariate monitoring es_ES
dc.subject Sensor es_ES
dc.subject Art es_ES
dc.subject Article es_ES
dc.subject Humidity es_ES
dc.subject Spain es_ES
dc.subject Temperature es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s110908685
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//HAR2010-21944-C02-01/ES/CARACTERIZACION MICROCLIMATICA DE OBRAS DE ARTE ENFOCADA A LA CONSERVACION PREVENTIVA DE LAS MISMAS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//HAR2010-21944-C02-02/ES/MONITORIZACION Y ESTUDIO DE DEGRADACION EN OBRAS DE ARTE ENFOCADO A LA CONSERVACION PREVENTIVA DE LAS MISMAS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Zarzo Castelló, M.; Fernández Navajas, Á.; García Diego, FJ. (2011). Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors. 11(9):8685-8710. doi:10.3390/s110908685 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.mdpi.com/1424-8220/11/9/8685 es_ES
dc.description.upvformatpinicio 8685 es_ES
dc.description.upvformatpfin 8710 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 9 es_ES
dc.relation.senia 205559
dc.identifier.pmid 22164100 en_EN
dc.identifier.pmcid PMC3231476 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Camuffo, D., Bernardi, A., Sturaro, G., & Valentino, A. (2002). The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. Journal of Cultural Heritage, 3(2), 155-161. doi:10.1016/s1296-2074(02)01171-8 es_ES
dc.description.references Tabunschikov, Y., & Brodatch, M. (2004). Indoor air climate requirements for Russian churches and cathedrals. Indoor Air, 14(s7), 168-174. doi:10.1111/j.1600-0668.2004.00285.x es_ES
dc.description.references Camuffo, D., Sturaro, G., & Valentino, A. (1999). Thermodynamic exchanges between the external boundary layer and the indoor microclimate at the Basilica of Santa Maria Maggiore, Rome, Italy: the problem of conservation of ancient works of art. Boundary-Layer Meteorology, 92(2), 243-262. doi:10.1023/a:1002026711404 es_ES
dc.description.references Vuerich, E., Malaspina, F., Barazutti, M., Georgiadis, T., & Nardino, M. (2008). Indoor measurements of microclimate variables and ozone in the church of San Vincenzo (Monastery of Bassano Romano — Italy): A pilot study. Microchemical Journal, 88(2), 218-223. doi:10.1016/j.microc.2007.11.014 es_ES
dc.description.references LOUPA, G., CHARPANTIDOU, E., KIOUTSIOUKIS, I., & RAPSOMANIKIS, S. (2006). Indoor microclimate, ozone and nitrogen oxides in two medieval churches in Cyprus. Atmospheric Environment, 40(39), 7457-7466. doi:10.1016/j.atmosenv.2006.07.015 es_ES
dc.description.references Brimblecombe, P., Blades, N., Camuffo, D., Sturaro, G., Valentino, A., Gysels, K., … Wieser, M. (1999). The Indoor Environment of a Modern Museum Building, The Sainsbury Centre for Visual Arts, Norwich, UK. Indoor Air, 9(3), 146-164. doi:10.1111/j.1600-0668.1999.t01-1-00002.x es_ES
dc.description.references Camuffo, D., Brimblecombe, P., Van Grieken, R., Busse, H.-J., Sturaro, G., Valentino, A., … Kim, O. (1999). Indoor air quality at the Correr Museum, Venice, Italy. Science of The Total Environment, 236(1-3), 135-152. doi:10.1016/s0048-9697(99)00262-4 es_ES
dc.description.references Camuffo, D. (2001). Environmental monitoring in four European museums. Atmospheric Environment, 35, 127-140. doi:10.1016/s1352-2310(01)00088-7 es_ES
dc.description.references Gysels, K., Delalieux, F., Deutsch, F., Van Grieken, R., Camuffo, D., Bernardi, A., … Wieser, M. (2004). Indoor environment and conservation in the Royal Museum of Fine Arts, Antwerp, Belgium. Journal of Cultural Heritage, 5(2), 221-230. doi:10.1016/j.culher.2004.02.002 es_ES
dc.description.references Sturaro, G., Camuffo, D., Brimblecombe, P., Grieken, R. V., Busse, H.-J., Bernardi, A., … Buczolits, S. (2003). Multidisciplinary Environmental Monitoring at the Kunsthistorisches Museum, Vienna. Journal of Trace and Microprobe Techniques, 21(2), 273-294. doi:10.1081/tma-120020262 es_ES
dc.description.references Camuffo, D. (1983). Indoor dynamic climatology: Investigations on the interactions between walls and indoor environment. Atmospheric Environment (1967), 17(9), 1803-1809. doi:10.1016/0004-6981(83)90188-9 es_ES
dc.description.references Camuffo, D., Pagan, E., Bernardi, A., & Becherini, F. (2004). The impact of heating, lighting and people in re-using historical buildings: a case study. Journal of Cultural Heritage, 5(4), 409-416. doi:10.1016/j.culher.2004.01.005 es_ES
dc.description.references Camuffo, D., & Bernardi, A. (1995). Study of the Microclimate of the Hall of the Giants in the Carrara Palace in Padua. Studies in Conservation, 40(4), 237. doi:10.2307/1506498 es_ES
dc.description.references Bernardi, A., Todorov, V., & Hiristova, J. (2000). Microclimatic analysis in St. Stephan’s church, Nessebar, Bulgaria after interventions for the conservation of frescoes. Journal of Cultural Heritage, 1(3), 281-286. doi:10.1016/s1296-2074(00)01084-0 es_ES
dc.description.references García-Diego, F.-J., & Zarzo, M. (2010). Microclimate monitoring by multivariate statistical control: The renaissance frescoes of the Cathedral of Valencia (Spain). Journal of Cultural Heritage, 11(3), 339-344. doi:10.1016/j.culher.2009.06.002 es_ES
dc.description.references Corgnati, S. P., & Filippi, M. (2010). Assessment of thermo-hygrometric quality in museums: Method and in-field application to the «Duccio di Buoninsegna» exhibition at Santa Maria della Scala (Siena, Italy). Journal of Cultural Heritage, 11(3), 345-349. doi:10.1016/j.culher.2009.05.003 es_ES
dc.description.references Del Vescovo, D., & Fregolent, A. (2005). Assessment of fresco detachments through a non-invasive acoustic method. Journal of Sound and Vibration, 284(3-5), 1015-1031. doi:10.1016/j.jsv.2004.07.011 es_ES
dc.description.references www.maxim-ic.com/an148 es_ES
dc.description.references www.maxim-ic.com/an244 es_ES
dc.description.references www.maxim-ic.com/an4206 es_ES
dc.description.references Matsuguchi, M., Yoshida, M., Kuroiwa, T., & Ogura, T. (2004). Depression of a capacitive-type humidity sensor’s drift by introducing a cross-linked structure in the sensing polymer. Sensors and Actuators B: Chemical, 102(1), 97-101. doi:10.1016/j.snb.2003.12.061 es_ES
dc.description.references Condensation in the Walls of Humidified Buildingshttp://www.conservationphysics.org/condens/condens1.php es_ES
dc.description.references Zarzo, M., & Martí, P. (2011). Modeling the variability of solar radiation data among weather stations by means of principal components analysis. Applied Energy, 88(8), 2775-2784. doi:10.1016/j.apenergy.2011.01.070 es_ES
dc.description.references Dunia, R., Joe Qin, S., Edgar, T. F., & McAvoy, T. J. (1996). Use of principal component analysis for sensor fault identification. Computers & Chemical Engineering, 20, S713-S718. doi:10.1016/0098-1354(96)00128-7 es_ES
dc.description.references Zhu, D., Bai, J., & Yang, S. (2009). A Multi-Fault Diagnosis Method for Sensor Systems Based on Principle Component Analysis. Sensors, 10(1), 241-253. doi:10.3390/s100100241 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem