Mostrar el registro sencillo del ítem
dc.contributor.author | Bataller Prats, Román | es_ES |
dc.contributor.author | Campos Sánchez, Inmaculada | es_ES |
dc.contributor.author | Laguarda Miró, Nicolás | es_ES |
dc.contributor.author | Alcañiz Fillol, Miguel | es_ES |
dc.contributor.author | Soto Camino, Juan | es_ES |
dc.contributor.author | Martínez Mañez, Ramón | es_ES |
dc.contributor.author | Gil Sánchez, Luís | es_ES |
dc.contributor.author | García Breijo, Eduardo | es_ES |
dc.contributor.author | Ibáñez Civera, Francisco Javier | es_ES |
dc.date.accessioned | 2013-05-14T08:48:06Z | |
dc.date.available | 2013-05-14T08:48:06Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10251/28813 | |
dc.description.abstract | A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm-3, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm-3 of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu2+ or Co2+ complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca2+. The system offers a PLS prediction model for glyphosate detection with values of 098, -2.3 ¿ 10-5 and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. © 2012 by the authors; licensee MDPI, Basel, Switzerland. | es_ES |
dc.description.sponsorship | Financial support from the Spanish Government (Project MAT2009-14564-C04-01 and PCI-Mediterraneo A/024590/09/A/ 03044/10), the Generalitat Valenciana (Project PROMETEO/2009/016), the UPV (project PAID-05-10) and its Centre de Cooperacio al Desenvolupament (Programa ADSIDEO-COOPERACIO 2010) is gratefully acknowledged. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Electronic tongue | es_ES |
dc.subject | Glyphosate | es_ES |
dc.subject | PLS | es_ES |
dc.subject | Rotating disk electrodes | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s121217553 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De \"Puertas Moleculares\" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-10/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Bataller Prats, R.; Campos Sánchez, I.; Laguarda Miró, N.; Alcañiz Fillol, M.; Soto Camino, J.; Martínez Mañez, R.; Gil Sánchez, L.... (2012). Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents. Sensors. 12:17553-17568. https://doi.org/10.3390/s121217553 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/s121217553 | es_ES |
dc.description.upvformatpinicio | 17553 | es_ES |
dc.description.upvformatpfin | 17568 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.relation.senia | 231421 | |
dc.identifier.pmid | 23250277 | en_EN |
dc.identifier.pmcid | PMC3571853 | en_EN |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Sierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31(2), 220-226. doi:10.1590/s0100-40422008000200006 | es_ES |
dc.description.references | Sawchuk, J. W., Van Acker, R. C., & Friesen, L. F. (2006). Influence of a Range of Dosages of MCPA, Glyphosate, and Thifensulfuron: Tribenuron (2:1) on Conventional Canola (Brassica napus) and White Bean (Phaseolus vulgaris) Growth and Yield. Weed Technology, 20(1), 184-197. doi:10.1614/wt-05-064r1.1 | es_ES |
dc.description.references | Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M.-C., & Séralini, G.-E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184-191. doi:10.1016/j.tox.2009.06.006 | es_ES |
dc.description.references | Kataoka, H., Ryu, S., Sakiyama, N., & Makita, M. (1996). Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. Journal of Chromatography A, 726(1-2), 253-258. doi:10.1016/0021-9673(95)01071-8 | es_ES |
dc.description.references | MOTOJYUKU, M., SAITO, T., AKIEDA, K., OTSUKA, H., YAMAMOTO, I., & INOKUCHI, S. (2008). Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography–mass spectrometry. Journal of Chromatography B, 875(2), 509-514. doi:10.1016/j.jchromb.2008.10.003 | es_ES |
dc.description.references | De Llasera, M. P. G., Gómez-Almaraz, L., Vera-Avila, L. E., & Peña-Alvarez, A. (2005). Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit. Journal of Chromatography A, 1093(1-2), 139-146. doi:10.1016/j.chroma.2005.07.063 | es_ES |
dc.description.references | Coutinho, C. F. B., Coutinho, L. F. M., Mazo, L. H., Nixdorf, S. L., & Camara, C. A. P. (2008). Rapid and direct determination of glyphosate and aminomethylphosphonic acid in water using anion-exchange chromatography with coulometric detection. Journal of Chromatography A, 1208(1-2), 246-249. doi:10.1016/j.chroma.2008.09.009 | es_ES |
dc.description.references | Yoshioka, N., Asano, M., Kuse, A., Mitsuhashi, T., Nagasaki, Y., & Ueno, Y. (2011). Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography. Journal of Chromatography A, 1218(23), 3675-3680. doi:10.1016/j.chroma.2011.04.021 | es_ES |
dc.description.references | SILVA, A. S., TÓTH, I. V., PEZZA, L., PEZZA, H. R., & LIMA, J. L. F. C. (2011). Determination of Glyphosate in Water Samples by Multi-pumping Flow System Coupled to a Liquid Waveguide Capillary Cell. Analytical Sciences, 27(10), 1031. doi:10.2116/analsci.27.1031 | es_ES |
dc.description.references | Amelin, V. G., Bol’shakov, D. S., & Tretiakov, A. V. (2012). Determination of glyphosate and aminomethylphosphonic acid in surface water and vegetable oil by capillary zone electrophoresis. Journal of Analytical Chemistry, 67(4), 386-391. doi:10.1134/s1061934812020037 | es_ES |
dc.description.references | Da Silva, A. S., Fernandes, F. C. B., Tognolli, J. O., Pezza, L., & Pezza, H. R. (2011). A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1881-1885. doi:10.1016/j.saa.2011.05.081 | es_ES |
dc.description.references | Chiu, H.-Y., Lin, Z.-Y., Tu, H.-L., & Whang, C.-W. (2008). Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography A, 1177(1), 195-198. doi:10.1016/j.chroma.2007.11.042 | es_ES |
dc.description.references | Jin, J., Takahashi, F., Kaneko, T., & Nakamura, T. (2010). Characterization of electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution. Electrochimica Acta, 55(20), 5532-5537. doi:10.1016/j.electacta.2010.04.031 | es_ES |
dc.description.references | Yang, G., Xu, X., Shen, M., Wang, W., Xu, L., Chen, G., & Fu, F. (2009). Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. ELECTROPHORESIS, 30(10), 1718-1723. doi:10.1002/elps.200800387 | es_ES |
dc.description.references | Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R. L., & Dores, E. F. G. C. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130-136. doi:10.1016/j.talanta.2012.06.059 | es_ES |
dc.description.references | Songa, E. A., Somerset, V. S., Waryo, T., Baker, P. G. L., & Iwuoha, E. I. (2009). Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure and Applied Chemistry, 81(1), 123-139. doi:10.1351/pac-con-08-01-15 | es_ES |
dc.description.references | Khenifi, A., Derriche, Z., Forano, C., Prevot, V., Mousty, C., Scavetta, E., … Tonelli, D. (2009). Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Analytica Chimica Acta, 654(2), 97-102. doi:10.1016/j.aca.2009.09.023 | es_ES |
dc.description.references | Sánchez-Bayo, F., Hyne, R. V., & Desseille, K. L. (2010). An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Analytica Chimica Acta, 675(2), 125-131. doi:10.1016/j.aca.2010.07.013 | es_ES |
dc.description.references | Aquino Neto, S., & de Andrade, A. R. (2009). Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochimica Acta, 54(7), 2039-2045. doi:10.1016/j.electacta.2008.07.019 | es_ES |
dc.description.references | Méndez, M. A., Súarez, M. F., Cortés, M. T., & Sarria, V. M. (2007). Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation. Electrochemistry Communications, 9(10), 2585-2590. doi:10.1016/j.elecom.2007.08.008 | es_ES |
dc.description.references | COUTINHO, C., SILVA, M., CALEGARO, M., MACHADO, S., & MAZO, L. (2007). Investigation of copper dissolution in the presence of glyphosate using hydrodynamic voltammetry and chronoamperometry. Solid State Ionics, 178(1-2), 161-164. doi:10.1016/j.ssi.2006.10.027 | es_ES |
dc.description.references | Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker, P. G. L., & Iwuoha, E. I. (2009). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117-123. doi:10.1016/j.bioelechem.2009.02.007 | es_ES |
dc.description.references | Bratskaya, S., Golikov, A., Lutsenko, T., Nesterova, O., & Dudarchik, V. (2008). Charge characteristics of humic and fulvic acids: Comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Chemosphere, 73(4), 557-563. doi:10.1016/j.chemosphere.2008.06.014 | es_ES |
dc.description.references | De Paolis, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere, 34(8), 1693-1704. doi:10.1016/s0045-6535(97)00026-x | es_ES |
dc.description.references | Wang, S., Hu, J., Li, J., & Dong, Y. (2009). Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite. Journal of Hazardous Materials, 167(1-3), 44-51. doi:10.1016/j.jhazmat.2008.12.079 | es_ES |
dc.description.references | Chen, C., & Wang, X. (2007). Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Applied Radiation and Isotopes, 65(2), 155-163. doi:10.1016/j.apradiso.2006.07.003 | es_ES |
dc.description.references | Heineke, D., Franklin, S. J., & Raymond, K. N. (1994). Coordination Chemistry of Glyphosate: Structural and Spectroscopic Characterization of Bis(glyphosate)metal(III) Complexes. Inorganic Chemistry, 33(11), 2413-2421. doi:10.1021/ic00089a017 | es_ES |
dc.description.references | Woertz, K., Tissen, C., Kleinebudde, P., & Breitkreutz, J. (2010). Performance qualification of an electronic tongue based on ICH guideline Q2. Journal of Pharmaceutical and Biomedical Analysis, 51(3), 497-506. doi:10.1016/j.jpba.2009.09.029 | es_ES |
dc.description.references | Vlasov, Y., Legin, A., & Rudnitskaya, A. (2002). Electronic tongues and their analytical application. Analytical and Bioanalytical Chemistry, 373(3), 136-146. doi:10.1007/s00216-002-1310-2 | es_ES |
dc.description.references | Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010 | es_ES |
dc.description.references | Campos, I., Alcañiz, M., Aguado, D., Barat, R., Ferrer, J., Gil, L., … Vivancos, J.-L. (2012). A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants. Water Research, 46(8), 2605-2614. doi:10.1016/j.watres.2012.02.029 | es_ES |
dc.description.references | Campos, I., Masot, R., Alcañiz, M., Gil, L., Soto, J., Vivancos, J. L., … Martínez-Mañez., R. (2010). Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 149(1), 71-78. doi:10.1016/j.snb.2010.06.028 | es_ES |
dc.description.references | García-Breijo, E., Barat, J. M., Torres, O. L., Grau, R., Gil, L., Ibáñez, J., … Fraile, R. (2008). Development of a puncture electronic device for electrical conductivity measurements throughout meat salting. Sensors and Actuators A: Physical, 148(1), 63-67. doi:10.1016/j.sna.2008.07.013 | es_ES |
dc.description.references | Gil, L., Barat, J. M., Garcia-Breijo, E., Ibañez, J., Martínez-Máñez, R., Soto, J., … Toldrá, F. (2008). Fish freshness analysis using metallic potentiometric electrodes. Sensors and Actuators B: Chemical, 131(2), 362-370. doi:10.1016/j.snb.2007.11.052 | es_ES |
dc.description.references | Labrador, R. H., Masot, R., Alcañiz, M., Baigts, D., Soto, J., Martínez-Mañez, R., … Barat, J. M. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864-870. doi:10.1016/j.foodchem.2010.02.049 | es_ES |
dc.description.references | Toko, K. (2000). Taste sensor. Sensors and Actuators B: Chemical, 64(1-3), 205-215. doi:10.1016/s0925-4005(99)00508-0 | es_ES |
dc.description.references | Scampicchio, M., Benedetti, S., Brunetti, B., & Mannino, S. (2006). Amperometric Electronic Tongue for the Evaluation of the Tea Astringency. Electroanalysis, 18(17), 1643-1648. doi:10.1002/elan.200603586 | es_ES |
dc.description.references | Bleibaum, R. N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E., & Isz, S. (2002). Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food Quality and Preference, 13(6), 409-422. doi:10.1016/s0950-3293(02)00017-4 | es_ES |
dc.description.references | Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., & Winquist, F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B: Chemical, 76(1-3), 449-454. doi:10.1016/s0925-4005(01)00583-4 | es_ES |
dc.description.references | Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9 | es_ES |
dc.description.references | Coutinho, C. F. B., & Mazo, L. H. (2005). Complexos metálicos com o herbicida glifosato: revisão. Química Nova, 28(6), 1038-1045. doi:10.1590/s0100-40422005000600019 | es_ES |
dc.description.references | Luo, P., Zhang, F., & Baldwin, R. P. (1991). Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Analytical Chemistry, 63(17), 1702-1707. doi:10.1021/ac00017a010 | es_ES |