- -

Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bataller Prats, Román es_ES
dc.contributor.author Campos Sánchez, Inmaculada es_ES
dc.contributor.author Laguarda Miró, Nicolás es_ES
dc.contributor.author Alcañiz Fillol, Miguel es_ES
dc.contributor.author Soto Camino, Juan es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Gil Sánchez, Luís es_ES
dc.contributor.author García Breijo, Eduardo es_ES
dc.contributor.author Ibáñez Civera, Francisco Javier es_ES
dc.date.accessioned 2013-05-14T08:48:06Z
dc.date.available 2013-05-14T08:48:06Z
dc.date.issued 2012
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/28813
dc.description.abstract A new electronic tongue to monitor the presence of glyphosate (a non-selective systemic herbicide) has been developed. It is based on pulse voltammetry and consists in an array of three working electrodes (Pt, Co and Cu) encapsulated on a methacrylate cylinder. The electrochemical response of the sensing array was characteristic of the presence of glyphosate in buffered water (phosphate buffer 0.1 mol·dm-3, pH 6.7). Rotating disc electrode (RDE) studies were carried out with Pt, Co and Cu electrodes in water at room temperature and at pH 6.7 using 0.1 mol·dm-3 of phosphate as a buffer. In the presence of glyphosate, the corrosion current of the Cu and Co electrodes increased significantly, probably due to the formation of Cu2+ or Co2+ complexes. The pulse array waveform for the voltammetric tongue was designed by taking into account some of the redox processes observed in the electrochemical studies. The PCA statistical analysis required four dimensions to explain 95% of variance. Moreover, a two-dimensional representation of the two principal components differentiated the water mixtures containing glyphosate. Furthermore, the PLS statistical analyses allowed the creation of a model to correlate the electrochemical response of the electrodes with glyphosate concentrations, even in the presence of potential interferents such as humic acids and Ca2+. The system offers a PLS prediction model for glyphosate detection with values of 098, -2.3 ¿ 10-5 and 0.94 for the slope, the intercept and the regression coefficient, respectively, which is in agreement with the good fit between the predicted and measured concentrations. The results suggest the feasibility of this system to help develop electronic tongues for glyphosate detection. © 2012 by the authors; licensee MDPI, Basel, Switzerland. es_ES
dc.description.sponsorship Financial support from the Spanish Government (Project MAT2009-14564-C04-01 and PCI-Mediterraneo A/024590/09/A/ 03044/10), the Generalitat Valenciana (Project PROMETEO/2009/016), the UPV (project PAID-05-10) and its Centre de Cooperacio al Desenvolupament (Programa ADSIDEO-COOPERACIO 2010) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Electronic tongue es_ES
dc.subject Glyphosate es_ES
dc.subject PLS es_ES
dc.subject Rotating disk electrodes es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s121217553
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De \"Puertas Moleculares\" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-10/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Bataller Prats, R.; Campos Sánchez, I.; Laguarda Miró, N.; Alcañiz Fillol, M.; Soto Camino, J.; Martínez Mañez, R.; Gil Sánchez, L.... (2012). Glyphosate Detection by Means of a Voltammetric Electronic Tongue and Discrimination of Potential Interferents. Sensors. 12:17553-17568. https://doi.org/10.3390/s121217553 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s121217553 es_ES
dc.description.upvformatpinicio 17553 es_ES
dc.description.upvformatpfin 17568 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.relation.senia 231421
dc.identifier.pmid 23250277 en_EN
dc.identifier.pmcid PMC3571853 en_EN
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Universitat Politècnica de València
dc.description.references Sierra, E. V., Méndez, M. A., Sarria, V. M., & Cortés, M. T. (2008). Electrooxidación de glifosato sobre electrodos de níquel y cobre. Química Nova, 31(2), 220-226. doi:10.1590/s0100-40422008000200006 es_ES
dc.description.references Sawchuk, J. W., Van Acker, R. C., & Friesen, L. F. (2006). Influence of a Range of Dosages of MCPA, Glyphosate, and Thifensulfuron: Tribenuron (2:1) on Conventional Canola (Brassica napus) and White Bean (Phaseolus vulgaris) Growth and Yield. Weed Technology, 20(1), 184-197. doi:10.1614/wt-05-064r1.1 es_ES
dc.description.references Gasnier, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M.-C., & Séralini, G.-E. (2009). Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology, 262(3), 184-191. doi:10.1016/j.tox.2009.06.006 es_ES
dc.description.references Kataoka, H., Ryu, S., Sakiyama, N., & Makita, M. (1996). Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. Journal of Chromatography A, 726(1-2), 253-258. doi:10.1016/0021-9673(95)01071-8 es_ES
dc.description.references MOTOJYUKU, M., SAITO, T., AKIEDA, K., OTSUKA, H., YAMAMOTO, I., & INOKUCHI, S. (2008). Determination of glyphosate, glyphosate metabolites, and glufosinate in human serum by gas chromatography–mass spectrometry. Journal of Chromatography B, 875(2), 509-514. doi:10.1016/j.jchromb.2008.10.003 es_ES
dc.description.references De Llasera, M. P. G., Gómez-Almaraz, L., Vera-Avila, L. E., & Peña-Alvarez, A. (2005). Matrix solid-phase dispersion extraction and determination by high-performance liquid chromatography with fluorescence detection of residues of glyphosate and aminomethylphosphonic acid in tomato fruit. Journal of Chromatography A, 1093(1-2), 139-146. doi:10.1016/j.chroma.2005.07.063 es_ES
dc.description.references Coutinho, C. F. B., Coutinho, L. F. M., Mazo, L. H., Nixdorf, S. L., & Camara, C. A. P. (2008). Rapid and direct determination of glyphosate and aminomethylphosphonic acid in water using anion-exchange chromatography with coulometric detection. Journal of Chromatography A, 1208(1-2), 246-249. doi:10.1016/j.chroma.2008.09.009 es_ES
dc.description.references Yoshioka, N., Asano, M., Kuse, A., Mitsuhashi, T., Nagasaki, Y., & Ueno, Y. (2011). Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography–tandem mass spectrometry using hydrophilic interaction chromatography. Journal of Chromatography A, 1218(23), 3675-3680. doi:10.1016/j.chroma.2011.04.021 es_ES
dc.description.references SILVA, A. S., TÓTH, I. V., PEZZA, L., PEZZA, H. R., & LIMA, J. L. F. C. (2011). Determination of Glyphosate in Water Samples by Multi-pumping Flow System Coupled to a Liquid Waveguide Capillary Cell. Analytical Sciences, 27(10), 1031. doi:10.2116/analsci.27.1031 es_ES
dc.description.references Amelin, V. G., Bol’shakov, D. S., & Tretiakov, A. V. (2012). Determination of glyphosate and aminomethylphosphonic acid in surface water and vegetable oil by capillary zone electrophoresis. Journal of Analytical Chemistry, 67(4), 386-391. doi:10.1134/s1061934812020037 es_ES
dc.description.references Da Silva, A. S., Fernandes, F. C. B., Tognolli, J. O., Pezza, L., & Pezza, H. R. (2011). A simple and green analytical method for determination of glyphosate in commercial formulations and water by diffuse reflectance spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1881-1885. doi:10.1016/j.saa.2011.05.081 es_ES
dc.description.references Chiu, H.-Y., Lin, Z.-Y., Tu, H.-L., & Whang, C.-W. (2008). Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography A, 1177(1), 195-198. doi:10.1016/j.chroma.2007.11.042 es_ES
dc.description.references Jin, J., Takahashi, F., Kaneko, T., & Nakamura, T. (2010). Characterization of electrochemiluminescence of tris(2,2′-bipyridine)ruthenium(II) with glyphosate as coreactant in aqueous solution. Electrochimica Acta, 55(20), 5532-5537. doi:10.1016/j.electacta.2010.04.031 es_ES
dc.description.references Yang, G., Xu, X., Shen, M., Wang, W., Xu, L., Chen, G., & Fu, F. (2009). Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. ELECTROPHORESIS, 30(10), 1718-1723. doi:10.1002/elps.200800387 es_ES
dc.description.references Oliveira, G. C., Moccelini, S. K., Castilho, M., Terezo, A. J., Possavatz, J., Magalhães, M. R. L., & Dores, E. F. G. C. (2012). Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta, 98, 130-136. doi:10.1016/j.talanta.2012.06.059 es_ES
dc.description.references Songa, E. A., Somerset, V. S., Waryo, T., Baker, P. G. L., & Iwuoha, E. I. (2009). Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure and Applied Chemistry, 81(1), 123-139. doi:10.1351/pac-con-08-01-15 es_ES
dc.description.references Khenifi, A., Derriche, Z., Forano, C., Prevot, V., Mousty, C., Scavetta, E., … Tonelli, D. (2009). Glyphosate and glufosinate detection at electrogenerated NiAl-LDH thin films. Analytica Chimica Acta, 654(2), 97-102. doi:10.1016/j.aca.2009.09.023 es_ES
dc.description.references Sánchez-Bayo, F., Hyne, R. V., & Desseille, K. L. (2010). An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Analytica Chimica Acta, 675(2), 125-131. doi:10.1016/j.aca.2010.07.013 es_ES
dc.description.references Aquino Neto, S., & de Andrade, A. R. (2009). Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochimica Acta, 54(7), 2039-2045. doi:10.1016/j.electacta.2008.07.019 es_ES
dc.description.references Méndez, M. A., Súarez, M. F., Cortés, M. T., & Sarria, V. M. (2007). Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation. Electrochemistry Communications, 9(10), 2585-2590. doi:10.1016/j.elecom.2007.08.008 es_ES
dc.description.references COUTINHO, C., SILVA, M., CALEGARO, M., MACHADO, S., & MAZO, L. (2007). Investigation of copper dissolution in the presence of glyphosate using hydrodynamic voltammetry and chronoamperometry. Solid State Ionics, 178(1-2), 161-164. doi:10.1016/j.ssi.2006.10.027 es_ES
dc.description.references Songa, E. A., Arotiba, O. A., Owino, J. H. O., Jahed, N., Baker, P. G. L., & Iwuoha, E. I. (2009). Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry, 75(2), 117-123. doi:10.1016/j.bioelechem.2009.02.007 es_ES
dc.description.references Bratskaya, S., Golikov, A., Lutsenko, T., Nesterova, O., & Dudarchik, V. (2008). Charge characteristics of humic and fulvic acids: Comparative analysis by colloid titration and potentiometric titration with continuous pK-distribution function model. Chemosphere, 73(4), 557-563. doi:10.1016/j.chemosphere.2008.06.014 es_ES
dc.description.references De Paolis, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere, 34(8), 1693-1704. doi:10.1016/s0045-6535(97)00026-x es_ES
dc.description.references Wang, S., Hu, J., Li, J., & Dong, Y. (2009). Influence of pH, soil humic/fulvic acid, ionic strength, foreign ions and addition sequences on adsorption of Pb(II) onto GMZ bentonite. Journal of Hazardous Materials, 167(1-3), 44-51. doi:10.1016/j.jhazmat.2008.12.079 es_ES
dc.description.references Chen, C., & Wang, X. (2007). Sorption of Th (IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Applied Radiation and Isotopes, 65(2), 155-163. doi:10.1016/j.apradiso.2006.07.003 es_ES
dc.description.references Heineke, D., Franklin, S. J., & Raymond, K. N. (1994). Coordination Chemistry of Glyphosate: Structural and Spectroscopic Characterization of Bis(glyphosate)metal(III) Complexes. Inorganic Chemistry, 33(11), 2413-2421. doi:10.1021/ic00089a017 es_ES
dc.description.references Woertz, K., Tissen, C., Kleinebudde, P., & Breitkreutz, J. (2010). Performance qualification of an electronic tongue based on ICH guideline Q2. Journal of Pharmaceutical and Biomedical Analysis, 51(3), 497-506. doi:10.1016/j.jpba.2009.09.029 es_ES
dc.description.references Vlasov, Y., Legin, A., & Rudnitskaya, A. (2002). Electronic tongues and their analytical application. Analytical and Bioanalytical Chemistry, 373(3), 136-146. doi:10.1007/s00216-002-1310-2 es_ES
dc.description.references Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., … Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical, 158(2), 217-223. doi:10.1016/j.sna.2010.01.010 es_ES
dc.description.references Campos, I., Alcañiz, M., Aguado, D., Barat, R., Ferrer, J., Gil, L., … Vivancos, J.-L. (2012). A voltammetric electronic tongue as tool for water quality monitoring in wastewater treatment plants. Water Research, 46(8), 2605-2614. doi:10.1016/j.watres.2012.02.029 es_ES
dc.description.references Campos, I., Masot, R., Alcañiz, M., Gil, L., Soto, J., Vivancos, J. L., … Martínez-Mañez., R. (2010). Accurate concentration determination of anions nitrate, nitrite and chloride in minced meat using a voltammetric electronic tongue. Sensors and Actuators B: Chemical, 149(1), 71-78. doi:10.1016/j.snb.2010.06.028 es_ES
dc.description.references García-Breijo, E., Barat, J. M., Torres, O. L., Grau, R., Gil, L., Ibáñez, J., … Fraile, R. (2008). Development of a puncture electronic device for electrical conductivity measurements throughout meat salting. Sensors and Actuators A: Physical, 148(1), 63-67. doi:10.1016/j.sna.2008.07.013 es_ES
dc.description.references Gil, L., Barat, J. M., Garcia-Breijo, E., Ibañez, J., Martínez-Máñez, R., Soto, J., … Toldrá, F. (2008). Fish freshness analysis using metallic potentiometric electrodes. Sensors and Actuators B: Chemical, 131(2), 362-370. doi:10.1016/j.snb.2007.11.052 es_ES
dc.description.references Labrador, R. H., Masot, R., Alcañiz, M., Baigts, D., Soto, J., Martínez-Mañez, R., … Barat, J. M. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864-870. doi:10.1016/j.foodchem.2010.02.049 es_ES
dc.description.references Toko, K. (2000). Taste sensor. Sensors and Actuators B: Chemical, 64(1-3), 205-215. doi:10.1016/s0925-4005(99)00508-0 es_ES
dc.description.references Scampicchio, M., Benedetti, S., Brunetti, B., & Mannino, S. (2006). Amperometric Electronic Tongue for the Evaluation of the Tea Astringency. Electroanalysis, 18(17), 1643-1648. doi:10.1002/elan.200603586 es_ES
dc.description.references Bleibaum, R. N., Stone, H., Tan, T., Labreche, S., Saint-Martin, E., & Isz, S. (2002). Comparison of sensory and consumer results with electronic nose and tongue sensors for apple juices. Food Quality and Preference, 13(6), 409-422. doi:10.1016/s0950-3293(02)00017-4 es_ES
dc.description.references Ivarsson, P., Holmin, S., Höjer, N.-E., Krantz-Rülcker, C., & Winquist, F. (2001). Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms. Sensors and Actuators B: Chemical, 76(1-3), 449-454. doi:10.1016/s0925-4005(01)00583-4 es_ES
dc.description.references Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1-17. doi:10.1016/0003-2670(86)80028-9 es_ES
dc.description.references Coutinho, C. F. B., & Mazo, L. H. (2005). Complexos metálicos com o herbicida glifosato: revisão. Química Nova, 28(6), 1038-1045. doi:10.1590/s0100-40422005000600019 es_ES
dc.description.references Luo, P., Zhang, F., & Baldwin, R. P. (1991). Constant-potential amperometric detection of underivatized amino acids and peptides at a copper electrode. Analytical Chemistry, 63(17), 1702-1707. doi:10.1021/ac00017a010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem