Mostrar el registro sencillo del ítem
dc.contributor.author | Hermosilla, T. | es_ES |
dc.contributor.author | Ruiz Fernández, Luis Ángel | es_ES |
dc.contributor.author | Recio Recio, Jorge Abel | es_ES |
dc.contributor.author | Estornell Cremades, Javier | es_ES |
dc.date.accessioned | 2013-05-14T14:38:19Z | |
dc.date.available | 2013-05-14T14:38:19Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 2072-4292 | |
dc.identifier.uri | http://hdl.handle.net/10251/28845 | |
dc.description.abstract | In this paper, two main approaches for automatic building detection and localization using high spatial resolution imagery and LiDAR data are compared and evaluated: thresholding-based and object-based classification. The thresholding-based approach is founded on the establishment of two threshold values: one refers to the minimum height to be considered as building, defined using the LiDAR data, and the other refers to the presence of vegetation, which is defined according to the spectral response. The other approach follows the standard scheme of object-based image classification: segmentation, feature extraction and selection, and classification, here performed using decision trees. In addition, the effect of the inclusion in the building detection process of contextual relations with the shadows is evaluated. Quality assessment is performed at two different levels: area and object. Area-level evaluates the building delineation performance, whereas object-level assesses the accuracy in the spatial location of individual buildings. The results obtained show a high efficiency of the evaluated methods for building detection techniques, in particular the thresholding-based approach, when the parameters are properly adjusted and adapted to the type of urban landscape considered. © 2011 by the authors. | es_ES |
dc.description.sponsorship | The authors appreciate the financial support provided by the Spanish Ministry of Science and Innovation and FEDER in the framework of the projects CGL2009-14220 and CGL2010-19591/BTE, and the support of the Spanish Instituto Geografico Nacional (IGN). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Remote Sensing | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Building detection | es_ES |
dc.subject | High spatial resolution imagery | es_ES |
dc.subject | LiDAR | es_ES |
dc.subject | Object-based image classification | es_ES |
dc.subject | Automatic building detection | es_ES |
dc.subject | Feature extraction and selection | es_ES |
dc.subject | High efficiency | es_ES |
dc.subject | High resolution image | es_ES |
dc.subject | LIDAR data | es_ES |
dc.subject | Object based | es_ES |
dc.subject | Quality assessment | es_ES |
dc.subject | Spatial location | es_ES |
dc.subject | Spectral response | es_ES |
dc.subject | Urban landscape | es_ES |
dc.subject | Decision trees | es_ES |
dc.subject | Feature extraction | es_ES |
dc.subject | Image analysis | es_ES |
dc.subject | Image classification | es_ES |
dc.subject | Image resolution | es_ES |
dc.subject | Image segmentation | es_ES |
dc.subject | Optical radar | es_ES |
dc.subject | Quality control | es_ES |
dc.subject | Rating | es_ES |
dc.subject | Buildings | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Evaluation of automatic building detection approaches combining high resolution images and LiDAR data | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/rs3061188 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2009-14220-C02-01/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.description.bibliographicCitation | Hermosilla, T.; Ruiz Fernández, LÁ.; Recio Recio, JA.; Estornell Cremades, J. (2011). Evaluation of automatic building detection approaches combining high resolution images and LiDAR data. Remote Sensing. 3:1188-1210. https://doi.org/10.3390/rs3061188 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://www.mdpi.com/2072-4292/3/6/1188/pdf | es_ES |
dc.description.upvformatpinicio | 1188 | es_ES |
dc.description.upvformatpfin | 1210 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.relation.senia | 193523 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Instituto Geográfico Nacional | es_ES |
dc.description.references | Mayer, H. (1999). Automatic Object Extraction from Aerial Imagery—A Survey Focusing on Buildings. Computer Vision and Image Understanding, 74(2), 138-149. doi:10.1006/cviu.1999.0750 | es_ES |
dc.description.references | Kim, T., & Muller, J.-P. (1999). Development of a graph-based approach for building detection. Image and Vision Computing, 17(1), 3-14. doi:10.1016/s0262-8856(98)00092-4 | es_ES |
dc.description.references | Irvin, R. B., & McKeown, D. M. (1989). Methods for exploiting the relationship between buildings and their shadows in aerial imagery. IEEE Transactions on Systems, Man, and Cybernetics, 19(6), 1564-1575. doi:10.1109/21.44071 | es_ES |
dc.description.references | Lin, C., & Nevatia, R. (1998). Building Detection and Description from a Single Intensity Image. Computer Vision and Image Understanding, 72(2), 101-121. doi:10.1006/cviu.1998.0724 | es_ES |
dc.description.references | Katartzis, A., & Sahli, H. (2008). A Stochastic Framework for the Identification of Building Rooftops Using a Single Remote Sensing Image. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 259-271. doi:10.1109/tgrs.2007.904953 | es_ES |
dc.description.references | Lee, D. S., Shan, J., & Bethel, J. S. (2003). Class-Guided Building Extraction from Ikonos Imagery. Photogrammetric Engineering & Remote Sensing, 69(2), 143-150. doi:10.14358/pers.69.2.143 | es_ES |
dc.description.references | STASSOPOULOU, A., & CAELLI, T. (2000). BUILDING DETECTION USING BAYESIAN NETWORKS. International Journal of Pattern Recognition and Artificial Intelligence, 14(06), 715-733. doi:10.1142/s0218001400000477 | es_ES |
dc.description.references | Jin, X., & Davis, C. H. (2005). Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information. EURASIP Journal on Advances in Signal Processing, 2005(14). doi:10.1155/asp.2005.2196 | es_ES |
dc.description.references | Kim, Z., & Nevatia, R. (1999). Uncertain Reasoning and Learning for Feature Grouping. Computer Vision and Image Understanding, 76(3), 278-288. doi:10.1006/cviu.1999.0803 | es_ES |
dc.description.references | Dare, P. M. (2005). Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas. Photogrammetric Engineering & Remote Sensing, 71(2), 169-177. doi:10.14358/pers.71.2.169 | es_ES |
dc.description.references | Weidner, U., & Förstner, W. (1995). Towards automatic building extraction from high-resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing, 50(4), 38-49. doi:10.1016/0924-2716(95)98236-s | es_ES |
dc.description.references | Cord, M., & Declercq, D. (2001). Three-dimensional building detection and modeling using a statistical approach. IEEE Transactions on Image Processing, 10(5), 715-723. doi:10.1109/83.918565 | es_ES |
dc.description.references | Ma, R. (2005). DEM Generation and Building Detection from Lidar Data. Photogrammetric Engineering & Remote Sensing, 71(7), 847-854. doi:10.14358/pers.71.7.847 | es_ES |
dc.description.references | Miliaresis, G., & Kokkas, N. (2007). Segmentation and object-based classification for the extraction of the building class from LIDAR DEMs. Computers & Geosciences, 33(8), 1076-1087. doi:10.1016/j.cageo.2006.11.012 | es_ES |
dc.description.references | Zhang, K., Yan, J., & Chen, S.-C. (2006). Automatic Construction of Building Footprints From Airborne LIDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 44(9), 2523-2533. doi:10.1109/tgrs.2006.874137 | es_ES |
dc.description.references | Lafarge, F., Descombes, X., Zerubia, J., & Pierrot-Deseilligny, M. (2008). Automatic building extraction from DEMs using an object approach and application to the 3D-city modeling. ISPRS Journal of Photogrammetry and Remote Sensing, 63(3), 365-381. doi:10.1016/j.isprsjprs.2007.09.003 | es_ES |
dc.description.references | Yu, B., Liu, H., Wu, J., Hu, Y., & Zhang, L. (2010). Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landscape and Urban Planning, 98(3-4), 210-219. doi:10.1016/j.landurbplan.2010.08.004 | es_ES |
dc.description.references | Paparoditis, N., Cord, M., Jordan, M., & Cocquerez, J.-P. (1998). Building Detection and Reconstruction from Mid- and High-Resolution Aerial Imagery. Computer Vision and Image Understanding, 72(2), 122-142. doi:10.1006/cviu.1998.0722 | es_ES |
dc.description.references | Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Hermosilla, T. (2011). Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4(6), 521-538. doi:10.1080/17538947.2010.533201 | es_ES |
dc.description.references | Ruiz, L. A., Recio, J. A., Fernández-Sarría, A., & Hermosilla, T. (2011). A feature extraction software tool for agricultural object-based image analysis. Computers and Electronics in Agriculture, 76(2), 284-296. doi:10.1016/j.compag.2011.02.007 | es_ES |
dc.description.references | Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621. doi:10.1109/tsmc.1973.4309314 | es_ES |
dc.description.references | Sutton, R. N., & Hall, E. L. (1972). Texture Measures for Automatic Classification of Pulmonary Disease. IEEE Transactions on Computers, C-21(7), 667-676. doi:10.1109/t-c.1972.223572 | es_ES |
dc.description.references | Freund, Y. (1995). Boosting a Weak Learning Algorithm by Majority. Information and Computation, 121(2), 256-285. doi:10.1006/inco.1995.1136 | es_ES |
dc.description.references | Shufelt, J. A. (1999). Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 311-326. doi:10.1109/34.761262 | es_ES |
dc.description.references | Shan, J., & Lee, S. D. (2005). Quality of Building Extraction from IKONOS Imagery. Journal of Surveying Engineering, 131(1), 27-32. doi:10.1061/(asce)0733-9453(2005)131:1(27) | es_ES |