Mostrar el registro sencillo del ítem
dc.contributor.advisor | Martínez Capel, Francisco | es_ES |
dc.contributor.author | Olaya Marín, Esther Julia | es_ES |
dc.date.accessioned | 2013-05-15T06:35:10Z | |
dc.date.available | 2013-05-15T06:35:10Z | |
dc.date.created | 2013-04-22T10:00:42Z | es_ES |
dc.date.issued | 2013-05-15T06:35:07Z | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/28853 | |
dc.description.abstract | RESUMEN Los peces nativos son indicadores de la salud de los ecosistemas acuáticos, y se han convertido en un elemento de calidad clave para evaluar el estado ecológico de los ríos. La comprensión de los factores que afectan a las especies nativas de peces es importante para la gestión y conservación de los ecosistemas acuáticos. El objetivo general de esta tesis es analizar las relaciones entre variables biológicas y de hábitat (incluyendo la conectividad) a través de una variedad de escalas espaciales en los ríos Mediterráneos, con el desarrollo de herramientas de modelación para apoyar la toma de decisiones en la restauración de ríos. Esta tesis se compone de cuatro artículos. El primero tiene como objetivos modelar la relación entre un conjunto de variables ambientales y la riqueza de especies nativas (NFSR), y evaluar la eficacia de potenciales acciones de restauración para mejorar la NFSR en la cuenca del río Júcar. Para ello se aplicó un enfoque de modelación de red neuronal artificial (ANN), utilizando en la fase de entrenamiento el algoritmo Levenberg-Marquardt. Se aplicó el método de las derivadas parciales para determinar la importancia relativa de las variables ambientales. Según los resultados, el modelo de ANN combina variables que describen la calidad de ribera, la calidad del agua y el hábitat físico, y ayudó a identificar los principales factores que condicionan el patrón de distribución de la NFSR en los ríos Mediterráneos. En la segunda parte del estudio, el modelo fue utilizado para evaluar la eficacia de dos acciones de restauración en el río Júcar: la eliminación de dos azudes abandonados, con el consiguiente incremento de la proporción de corrientes. Estas simulaciones indican que la riqueza aumenta con el incremento de la longitud libre de barreras artificiales y la proporción del mesohabitat de corriente, y demostró la utilidad de las ANN como una poderosa herramienta para apoyar la toma de decisiones en el manejo y restauración ecológica de los ríos Mediterráneos. El segundo artículo tiene como objetivo determinar la importancia relativa de los dos principales factores que controlan la reducción de la riqueza de peces (NFSR), es decir, las interacciones entre las especies acuáticas, variables del hábitat (incluyendo la conectividad fluvial) y biológicas (incluidas las especies invasoras) en los ríos Júcar, Cabriel y Turia. Con este fin, tres modelos de ANN fueron analizados: el primero fue construido solamente con variables biológicas, el segundo se construyó únicamente con variables de hábitat y el tercero con la combinación de estos dos grupos de variables. Los resultados muestran que las variables de hábitat son los ¿drivers¿ más importantes para la distribución de NFSR, y demuestran la importancia ecológica de los modelos desarrollados. Los resultados de este estudio destacan la necesidad de proponer medidas de mitigación relacionadas con la mejora del hábitat (incluyendo la variabilidad de caudales en el río) como medida para conservar y restaurar los ríos Mediterráneos. El tercer artículo busca comparar la fiabilidad y relevancia ecológica de dos modelos predictivos de NFSR, basados en redes neuronales artificiales (ANN) y random forests (RF). La relevancia de las variables seleccionadas por cada modelo se evaluó a partir del conocimiento ecológico y apoyado por otras investigaciones. Los dos modelos fueron desarrollados utilizando validación cruzada k-fold y su desempeño fue evaluado a través de tres índices: el coeficiente de determinación (R2 ), el error cuadrático medio (MSE) y el coeficiente de determinación ajustado (R2 adj). Según los resultados, RF obtuvo el mejor desempeño en entrenamiento. Pero, el procedimiento de validación cruzada reveló que ambas técnicas generaron resultados similares (R2 = 68% para RF y R2 = 66% para ANN). La comparación de diferentes métodos de machine learning es muy útil para el análisis crítico de los resultados obtenidos a través de los modelos. El cuarto artículo tiene como objetivo evaluar la capacidad de las ANN para identificar los factores que afectan a la densidad y la presencia/ausencia de Luciobarbus guiraonis en la demarcación hidrográfica del Júcar. Se utilizó una red neuronal artificial multicapa de tipo feedforward (ANN) para representar relaciones no lineales entre descriptores de L. guiraonis con variables biológicas y de hábitat. El poder predictivo de los modelos se evaluó con base en el índice Kappa (k), la proporción de casos correctamente clasificados (CCI) y el área bajo la curva (AUC) característica operativa del receptor (ROC). La presencia/ausencia de L. guiraonis fue bien predicha por el modelo ANN (CCI = 87%, AUC = 0.85 y k = 0.66). La predicción de la densidad fue moderada (CCI = 62%, AUC = 0.71 y k = 0.43). Las variables más importantes que describen la presencia/ausencia fueron: radiación solar, área de drenaje y la proporción de especies exóticas de peces con un peso relativo del 27.8%, 24.53% y 13.60% respectivamente. En el modelo de densidad, las variables más importantes fueron el coeficiente de variación de los caudales medios anuales con una importancia relativa del 50.5% y la proporción de especies exóticas de peces con el 24.4%. Los modelos proporcionan información importante acerca de la relación de L. guiraonis con variables bióticas y de hábitat, este nuevo conocimiento podría utilizarse para apoyar futuros estudios y para contribuir en la toma de decisiones para la conservación y manejo de especies en los en los ríos Júcar, Cabriel y Turia. | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.source | Riunet | es_ES |
dc.subject | Artificial neural networks | es_ES |
dc.subject | River connectivity | es_ES |
dc.subject | Mitigation measures | es_ES |
dc.subject | Hydromorphology | es_ES |
dc.subject | Fish richness | es_ES |
dc.subject | River restoration | es_ES |
dc.subject | Invasive species | es_ES |
dc.subject | River regulation | es_ES |
dc.subject | Habitat degradation | es_ES |
dc.subject | Driver | es_ES |
dc.subject | Passenger | es_ES |
dc.subject | Mediterranean rivers | es_ES |
dc.subject | Random Forests | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Ecological models at fish community and species level to support effective river restoration | |
dc.type | Tesis doctoral | es_ES |
dc.identifier.doi | 10.4995/Thesis/10251/28853 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Olaya Marín, EJ. (2013). Ecological models at fish community and species level to support effective river restoration [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/28853 | es_ES |
dc.description.accrualMethod | TESIS | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.relation.tesis | 8075 | es_ES |