- -

Characterizing curvilinear features using the localized normal-score ensemble Kalman filter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterizing curvilinear features using the localized normal-score ensemble Kalman filter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhou ., Haiyan es_ES
dc.contributor.author Li ., Liangping es_ES
dc.contributor.author Gómez-Hernández, J. Jaime es_ES
dc.date.accessioned 2013-05-15T09:13:40Z
dc.date.available 2013-05-15T09:13:40Z
dc.date.issued 2012
dc.identifier.issn 1085-3375
dc.identifier.uri http://hdl.handle.net/10251/28857
dc.description.abstract The localized normal-score ensemble Kalman filter is shown to work for the characterization of non-multi-Gaussian distributed hydraulic conductivities by assimilating state observation data. The influence of type of flow regime, number of observation piezometers, and the prior model structure are evaluated in a synthetic aquifer. Steady-state observation data are not sufficient to identify the conductivity channels. Transient-state data are necessary for a good characterization of the hydraulic conductivity curvilinear patterns. Such characterization is very good with a dense network of observation data, and it deteriorates as the number of observation piezometers decreases. It is also remarkable that, even when the prior model structure is wrong, the localized normal-score ensemble Kalman filter can produce acceptable results for a sufficiently dense observation network. Copyright © 2012 Haiyan Zhou et al. es_ES
dc.description.sponsorship The authors gratefully acknowledge the financial support by the Spanish Ministry of Science and Innovation through project CGL2011-23295. The authors want to thank the reviewer for the comments which help improving the quality of the paper. en_EN
dc.language Inglés es_ES
dc.publisher Hindawi Publishing Corporation es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject sequential data assimilation es_ES
dc.subject flow es_ES
dc.subject parameters es_ES
dc.subject transient es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Characterizing curvilinear features using the localized normal-score ensemble Kalman filter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2012/805707
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-23295/ES/MODELACION ESTOCASTICA INVERSA FUERA DE LO NORMAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Zhou ., H.; Li ., L.; Gómez-Hernández, JJ. (2012). Characterizing curvilinear features using the localized normal-score ensemble Kalman filter. Abstract and Applied Analysis. 2012:1-18. https://doi.org/10.1155/2012/805707 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1155/2012/805707 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2012 es_ES
dc.relation.senia 233945
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Houtekamer, P. L., & Mitchell, H. L. (2001). A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation. Monthly Weather Review, 129(1), 123-137. doi:10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2 es_ES
dc.description.references Naevdal, G., Johnsen, L. M., Aanonsen, S. I., & Vefring, E. H. (2005). Reservoir Monitoring and Continuous Model Updating Using Ensemble Kalman Filter. SPE Journal, 10(01), 66-74. doi:10.2118/84372-pa es_ES
dc.description.references Chen, Y., & Zhang, D. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. doi:10.1016/j.advwatres.2005.09.007 es_ES
dc.description.references Li, L., Zhou, H., Hendricks Franssen, H.-J., & Gómez-Hernández, J. J. (2012). Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling. Water Resources Research, 48(1). doi:10.1029/2010wr010214 es_ES
dc.description.references Franssen, H. J. H., & Kinzelbach, W. (2009). Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology, 365(3-4), 261-274. doi:10.1016/j.jhydrol.2008.11.033 es_ES
dc.description.references Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174-188. doi:10.1109/78.978374 es_ES
dc.description.references Evensen, G., & van Leeuwen, P. J. (2000). An Ensemble Kalman Smoother for Nonlinear Dynamics. Monthly Weather Review, 128(6), 1852-1867. doi:10.1175/1520-0493(2000)128<1852:aeksfn>2.0.co;2 es_ES
dc.description.references Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014 es_ES
dc.description.references Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011 es_ES
dc.description.references Zhou, H., Li, L., Hendricks Franssen, H.-J., & Gómez-Hernández, J. J. (2011). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences, 44(2), 169-185. doi:10.1007/s11004-011-9372-3 es_ES
dc.description.references Burgers, G., Jan van Leeuwen, P., & Evensen, G. (1998). Analysis Scheme in the Ensemble Kalman Filter. Monthly Weather Review, 126(6), 1719-1724. doi:10.1175/1520-0493(1998)126<1719:asitek>2.0.co;2 es_ES
dc.description.references Evensen, G. (2009). Data Assimilation. doi:10.1007/978-3-642-03711-5 es_ES
dc.description.references Chen, Y., & Oliver, D. S. (2009). Cross-covariances and localization for EnKF in multiphase flow data assimilation. Computational Geosciences, 14(4), 579-601. doi:10.1007/s10596-009-9174-6 es_ES
dc.description.references Gaspari, G., & Cohn, S. E. (1999). Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteorological Society, 125(554), 723-757. doi:10.1002/qj.49712555417 es_ES
dc.description.references Hamill, T. M., Whitaker, J. S., & Snyder, C. (2001). Distance-Dependent Filtering of Background Error Covariance Estimates in an Ensemble Kalman Filter. Monthly Weather Review, 129(11), 2776-2790. doi:10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2 es_ES
dc.description.references Carrera, J., & Neuman, S. P. (1986). Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 2. Uniqueness, Stability, and Solution Algorithms. Water Resources Research, 22(2), 211-227. doi:10.1029/wr022i002p00211 es_ES
dc.description.references Delhomme, J. P. (1979). Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach. Water Resources Research, 15(2), 269-280. doi:10.1029/wr015i002p00269 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem