- -

Furrow-irrigated chufa crops in Valencia (Spain).II: Performance analysis and optimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Furrow-irrigated chufa crops in Valencia (Spain).II: Performance analysis and optimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pascual Seva, Nuria es_ES
dc.contributor.author San Bautista Primo, Alberto es_ES
dc.contributor.author López Galarza, Salvador Vicente es_ES
dc.contributor.author Maroto Borrego, José Vicente es_ES
dc.contributor.author Pascual España, Bernardo es_ES
dc.date.accessioned 2013-05-30T07:03:39Z
dc.date.available 2013-05-30T07:03:39Z
dc.date.issued 2013
dc.identifier.issn 1695-971X
dc.identifier.uri http://hdl.handle.net/10251/29288
dc.description.abstract Chufa (Cyperus esculentus L. var. sativus Boeck.) is a traditional crop in the Mediterranean region of Spain, where it is only furrow irrigated. This article analyzes the irrigation performance for this crop, conducting field studies over three consecutive seasons in Valencia (Spain). Irrigation schedule was based on the volumetric soil water content, which was measured with capacitance sensors. Infiltrability was measured with blocked-furrow infiltrometers. An area velocity flow module measured the water flow, the cross-sectional geometry of furrows was determined using furrow profilometers, and times for advance and recession were recorded. WinSRFR software was used to analyze every irrigation event, determining the application efficiency (AE) and distribution uniformity of the minimum (DUmin), and to optimize the combination of furrow inflow (q) and cut-off time (Tco). Average values obtained for AE were 30.1%, 25.6%, and 26.7% in 2007, 2008, and 2009, respectively, and the corresponding DUmin values were 0.54, 0.61, and 0.67. Optimized results showed that it is possible to reach AE and DUmin values up to 87% and 0.86, respectively. However, understanding the q-Tco relationship that maximizes both AE and DUmin is more important than knowing the specific values. A function that related q and Tco was obtained for the typical plot dimensions, and this was validated in 2011. Therefore, this function can be used in most of the plots in the cultivation area. es_ES
dc.description.sponsorship This study was funded by the Regulatory Council of Denomination of Origin Chufa of Valencia of Spain. The authors would like to thank Dr. E. Bautista for his help with the use of the Win SRFR 3.1 software. en_EN
dc.language Inglés es_ES
dc.publisher Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) es_ES
dc.relation.ispartof SPANISH JOURNAL OF AGRICULTURAL RESEARCH. REVISTA DE INVESTIGACION AGRARIA es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Application efficiency es_ES
dc.subject Cut-off time es_ES
dc.subject Distribution uniformity es_ES
dc.subject Furrow inflow rate es_ES
dc.subject Irrigation management es_ES
dc.subject Vegetable crop. es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Furrow-irrigated chufa crops in Valencia (Spain).II: Performance analysis and optimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5424/sjar/2013111-3384
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Pascual Seva, N.; San Bautista Primo, A.; López Galarza, SV.; Maroto Borrego, JV.; Pascual España, B. (2013). Furrow-irrigated chufa crops in Valencia (Spain).II: Performance analysis and optimization. SPANISH JOURNAL OF AGRICULTURAL RESEARCH. REVISTA DE INVESTIGACION AGRARIA. 11(1):268-278. https://doi.org/10.5424/sjar/2013111-3384 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.5424/sjar/2013111-3384 es_ES
dc.description.upvformatpinicio 268 es_ES
dc.description.upvformatpfin 278 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 234024
dc.contributor.funder Consejo Regulador de la Denominación de Origen Chufa de Valencia
dc.description.references ALARC, 2009. WinSRFR 3.1 User Manual. US Department of Agriculture - Agricultural Research Service – Arid Land Agricultural Research Center. Maricopa, AZ, USA. 188 pp. es_ES
dc.description.references Ayers RS, Westcot DW, 1994. Water quality for agriculture. FAO Irrig Drain Paper No 29, FAO, Rome. 97 pp. es_ES
dc.description.references Bautista, E., & Wallender, W. W. (1993). Identification of Furrow Intake Parameters from Advance Times and Rates. Journal of Irrigation and Drainage Engineering, 119(2), 295-311. doi:10.1061/(asce)0733-9437(1993)119:2(295) es_ES
dc.description.references Bautista, E., Clemmens, A. J., Strelkoff, T. S., & Schlegel, J. (2009). Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management, 96(7), 1146-1154. doi:10.1016/j.agwat.2009.03.007 es_ES
dc.description.references Bautista, E., Clemmens, A. J., Strelkoff, T. S., & Niblack, M. (2009). Analysis of surface irrigation systems with WinSRFR—Example application. Agricultural Water Management, 96(7), 1162-1169. doi:10.1016/j.agwat.2009.03.009 es_ES
dc.description.references Bondurant JA, 1957. Developing furrow infiltrometer. Agric Eng 38: 602-604. es_ES
dc.description.references Bos MG, 1980. Irrigation efficiencies at crop production level. International Commission on Irrigation and Drainage 29: 18-25. es_ES
dc.description.references Burt, C. M., Clemmens, A. J., Strelkoff, T. S., Solomon, K. H., Bliesner, R. D., Hardy, L. A., … Eisenhauer, D. E. (1997). Irrigation Performance Measures: Efficiency and Uniformity. Journal of Irrigation and Drainage Engineering, 123(6), 423-442. doi:10.1061/(asce)0733-9437(1997)123:6(423) es_ES
dc.description.references Clemmens, A. J., & Bautista, E. (2009). Toward Physically Based Estimation of Surface Irrigation Infiltration. Journal of Irrigation and Drainage Engineering, 135(5), 588-596. doi:10.1061/(asce)ir.1943-4774.0000092 es_ES
dc.description.references Clemmens A, Walker WR, Fangmeier DD, Hardy LA, 2007. Design of surface systems. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 499-531. es_ES
dc.description.references Elliot RL, Walker WR, 1982. Field evaluation of furrow infiltration and advance functions. T ASAE 25: 396-400. es_ES
dc.description.references Hart WE, Collins HG, Woodward G, Humpherys AS, 1980. Design and operation of gravity or surface systems. In: Design and operation of farm irrigation systems (Jensen ME, ed). ASAE, St. Joseph, MI, USA. pp: 499-579. es_ES
dc.description.references Horst, M. G., Shamutalov, S. S., Pereira, L. S., & Gonçalves, J. M. (2005). Field assessment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin. Agricultural Water Management, 77(1-3), 210-231. doi:10.1016/j.agwat.2004.09.041 es_ES
dc.description.references Jurriëns M, Zerihun D, Boonstra J, Feyen J, 2001. SURDEV: Surface irrigation software. Design, operation and evaluation of basin, border and furrow irrigation. ILRI, Wageningen, Holland. 194 pp. es_ES
dc.description.references Khatri, K. L., & Smith, R. J. (2006). Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrigation Science, 25(1), 33-43. doi:10.1007/s00271-006-0032-1 es_ES
dc.description.references Kruse EG, Heermann DF, 1977. Implications of irrigation system efficiencies. J Soil Water Cons 32: 465-470. es_ES
dc.description.references Lord JM, Ayars JE, 2007. Evaluating performance. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 791-803. es_ES
dc.description.references Maheshwari, B. L., & McMahon, T. A. (1993). Performance Evaluation of Border Irrigation Models for South-East Australia: Part 2, Overall Suitability for Field Applications. Journal of Agricultural Engineering Research, 54(2), 127-139. doi:10.1006/jaer.1993.1008 es_ES
dc.description.references Mateos, L., & Oyonarte, N. A. (2005). A spreadsheet model to evaluate sloping furrow irrigation accounting for infiltration variability. Agricultural Water Management, 76(1), 62-75. doi:10.1016/j.agwat.2005.01.013 es_ES
dc.description.references McClymont DJ, Smith RJ, Raine SR, 1999. An integrated numerical model for the design and management of furrow irrigation. Int Conf on Multi-Objective Decision Support Systems, Brisbane, Australia. 11 pp. es_ES
dc.description.references Merriam JL, Keller J, 1978. Farm irrigation system evaluation: a guide for Management. Utah St. Univ, Logan, UT, USA. 271 pp. es_ES
dc.description.references Merriam JL, Shearer MN, Burt CM, 1980. Evaluating irrigation systems and practices In: Design and operation of farm irrigation systems (Jensen ME, ed). ASAE, St. Joseph, MI, USA. pp: 721-759. es_ES
dc.description.references Neira, X. X., Álvarez, C. J., Cuesta, T. S., & Cancela, J. J. (2005). Evaluation of water-use in traditional irrigation. Agricultural Water Management, 75(2), 137-151. doi:10.1016/j.agwat.2004.12.007 es_ES
dc.description.references Oyonarte, N. A., Mateos, L., & Palomo, M. J. (2002). Infiltration Variability in Furrow Irrigation. Journal of Irrigation and Drainage Engineering, 128(1), 26-33. doi:10.1061/(asce)0733-9437(2002)128:1(26) es_ES
dc.description.references Pascual B, Maroto JV, López-Galarza S, Alagarda J, Castell Zeising V, 1997. El cultivo de la chufa (Cyperus esculentus L. var. sativus Boeck.). Estudios realizados. Generalitat Valenciana, Conselleria de Agricultura, Pesca y Alimentación, Valencia, Spain. 95 pp. [In Spanish]. es_ES
dc.description.references Pascual-Seva, N., San Bautista, A., Lopez-Galarza, S., Maroto, J. V., & Pascual, B. (2013). Furrow-irrigated chufa crops in Valencia (Spain). I: Productive response to two irrigation strategies. Spanish Journal of Agricultural Research, 11(1), 258. doi:10.5424/sjar/2013111-3385 es_ES
dc.description.references Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agricultural Water Management, 57(3), 175-206. doi:10.1016/s0378-3774(02)00075-6 es_ES
dc.description.references Playán, E., & Mateos, L. (2006). Modernization and optimization of irrigation systems to increase water productivity. Agricultural Water Management, 80(1-3), 100-116. doi:10.1016/j.agwat.2005.07.007 es_ES
dc.description.references Playán, E., Slatni, A., Castillo, R., & Faci, J. . (2000). A case study for irrigation modernisation: II. Agricultural Water Management, 42(3), 335-354. doi:10.1016/s0378-3774(99)00051-7 es_ES
dc.description.references Schmitz, G. H. (1993). Transient Infiltration from Cavities. I: Theory. Journal of Irrigation and Drainage Engineering, 119(3), 443-457. doi:10.1061/(asce)0733-9437(1993)119:3(443) es_ES
dc.description.references Smith RE, Warrick AW, 2007. Soil water relationships. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 120-159. es_ES
dc.description.references Smith, R. J., Raine, S. R., & Minkevich, J. (2005). Irrigation application efficiency and deep drainage potential under surface irrigated cotton. Agricultural Water Management, 71(2), 117-130. doi:10.1016/j.agwat.2004.07.008 es_ES
dc.description.references Soil Survey Staff, 2010. Keys to soil taxonomy, 11th ed. USDA-NRCS, Washington DC, USA. 338 pp. es_ES
dc.description.references Solomon KH, El-Gindy AM, Ibatullin SR, 2007. Planning and system selection. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 57-75. es_ES
dc.description.references Strelkoff TS, Clemmens A J, 2007. Hydraulics of surface systems. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 436-498. es_ES
dc.description.references Tabuada, M. A., Rego, Z. J. C., Vachaud, G., & Pereira, L. S. (1995). Modelling of furrow irrigation. Advance with two-dimensional infiltration. Agricultural Water Management, 28(3), 201-221. doi:10.1016/0378-3774(95)01177-k es_ES
dc.description.references VEIHMEYER, F. J., & HENDRICKSON, A. H. (1931). THE MOISTURE EQUIVALENT AS A MEASURE OF THE FIELD CAPACITY OF SOILS. Soil Science, 32(3), 181-194. doi:10.1097/00010694-193109000-00003 es_ES
dc.description.references Walker WR, 1989. Guidelines for designing and evaluating surface irrigation systems. FAO Irrig Drain Paper No 45, FAO, Rome. 137 pp. es_ES
dc.description.references Walker WR, 2003. SIRMOD III. Surface irrigation simulation, evaluation and design. Guide and technical documentation. Utah St. Univ, Logan, UT, USA. 138 pp. es_ES
dc.description.references Walker WR, Skogerboe GV, 1987. Surface irrigation. Theory and practice. Prentice-Hall, Englewood Cliffs, NJ, USA. 386 pp. es_ES
dc.description.references Wöhling, T., & Schmitz, G. H. (2007). Physically Based Coupled Model for Simulating 1D Surface–2D Subsurface Flow and Plant Water Uptake in Irrigation Furrows. I: Model Development. Journal of Irrigation and Drainage Engineering, 133(6), 538-547. doi:10.1061/(asce)0733-9437(2007)133:6(538) es_ES
dc.description.references Camacho E, Pérez C, Roldán J, Alcaide M, 1997. Modelo de manejo y control en tiempo real del riego por surcos. Ingeniería del agua 4(4): 11-18 [In Spanish]. es_ES
dc.description.references Elías F, Ruiz L, 1977. Agroclimatología de España. Cuadernos INIA nº 7, Madrid. 565 pp. [In Spanish]. es_ES
dc.description.references Keller J, 1965. Effect of irrigation method on water conservation. J Irrig Drain Division 91(IR 2): 61-72. es_ES
dc.description.references Pascual-Seva N, 2011. Estudios agronómicos sobre el cultivo de la chufa (Cyperus esculentus L. var. sativus Boeck.): estrategias de riego, tipos de plantación, absorción de nutrienes, y análisis fitoquímico. Doctoral thesis. Univ Politècnica de València, Valencia, Spain. 353 pp. [In Spanish]. es_ES
dc.description.references Simunek J, Sejna M, van Genuchten M Th, 1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media. US Salinity Laboratory, USDA, ARS, Riverside, CA, USA. 225 pp. es_ES
dc.description.references USDA-SCS, 1991a. Border irrigation. Section 15. National Engineering Handbook. US Department of Agriculture, Soil Conservation Service, Washington DC, USA. Chapter 4, 251 pp. es_ES
dc.description.references USDA-SCS, 1991b. Furrow irrigation. Section 15. National Engineering Handbook. US Department of Agriculture, Soil Conservation Service, Washington DC, USA. Chapter 5, 103 pp. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem