- -

A multiple local models approach to accuracy improvement in continuous glucose monitoring.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A multiple local models approach to accuracy improvement in continuous glucose monitoring.

Show simple item record

Files in this item

dc.contributor.author Barceló Rico, Fátima es_ES
dc.contributor.author Bondía Company, Jorge es_ES
dc.contributor.author Diez Ruano, José Luís es_ES
dc.contributor.author Rossetti ., Paolo es_ES
dc.date.accessioned 2013-06-10T11:43:55Z
dc.date.available 2013-06-10T11:43:55Z
dc.date.issued 2012
dc.identifier.issn 1520-9156
dc.identifier.uri http://hdl.handle.net/10251/29569
dc.description This is a copy of an article published in the Diabetes Technology & Therapeutics © 2012 copyright Mary Ann Liebert, Inc.; Diabetes Technology & Therapeutics is available online at: http://online.liebertpub.com/toc/dia/14/1 es_ES
dc.description.abstract [EN] Background: Continuous glucose monitoring (CGM) devices estimate plasma glucose (PG) from measurements in compartments alternative to blood. The accuracy of currently available CGM is yet unsatisfactory and may depend on the implemented calibration algorithms, which do not compensate adequately for the differences of glucose dynamics between the compartments. Here we propose and validate an innovative calibration algorithm for the improvement of CGM performance. Methods: CGM data from GlucoDay (R) (A. Menarini, Florence, Italy) and paired reference PG have been obtained from eight subjects without diabetes during eu-, hypo-, and hyperglycemic hyperinsulinemic clamps. A calibration algorithm based on a dynamic global model (GM) of the relationship between PG and CGM in the interstitial space has been obtained. The GM is composed by independent local models (LMs) weighted and added. LMs are defined by a combination of inputs from the CGM and by a validity function, so that each LM represents to a variable extent a different metabolic condition and/or sensor-subject interaction. The inputs best suited for glucose estimation were the sensor current I and glucose estimations (G) over cap, at different time instants [I-k, Ik-1, (G) over cap (k-1)] (IIG). In addition to IIG, other inputs have been used to obtain the GM, achieving different configurations of the calibration algorithm. Results: Even in its simplest configuration considering only IIG, the new calibration algorithm improved the accuracy of the estimations compared with the manufacturer's estimate: mean absolute relative difference (MARD) = 10.8 +/- 1.5% versus 14.7 +/- 5.4%, respectively (P = 0.012, by analysis of variance). When additional exogenous signals were considered, the MARD improved further (7.8 +/- 2.6%, P<0.05). Conclusions: The LM technique allows for the identification of intercompartmental glucose dynamics. Inclusion of these dynamics into the calibration algorithm improves the accuracy of PG estimations. es_ES
dc.description.sponsorship The authors acknowledge the partial funding of this work by the Spanish Ministry of Science and Innovation projects DPI2007-66728-C02-01 and DPI2010-20764-C02-01 and by the European Union through FEDER funds and grant FP7-PEOPLE-2009-IEF, Reference 252085. F.B.R. is the recipient of a fellowship (FPU AP2008-02967) from the Spanish Ministry of Education.
dc.language Inglés es_ES
dc.publisher Mary Ann Liebert es_ES
dc.relation MICINN/DPI2007-66728-C02-01 es_ES
dc.relation MICINN/DPI2010-20764-C02-01 es_ES
dc.relation MECD/FPU/AP2008-02967 es_ES
dc.relation.ispartof Diabetes Technology & Therapeutics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Plasma-Glucose es_ES
dc.subject Interstitial glucose es_ES
dc.subject Clinical accuracy es_ES
dc.subject Blood-Glucose es_ES
dc.subject Sensor es_ES
dc.subject Microdialysis es_ES
dc.subject Hypoglycemia es_ES
dc.subject Insulin es_ES
dc.subject Humans es_ES
dc.subject Tissue es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title A multiple local models approach to accuracy improvement in continuous glucose monitoring. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1089/dia.2011.0138.
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/252085 en_EN
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.description.bibliographicCitation Barceló Rico, F.; Bondía Company, J.; Diez Ruano, JL.; Rossetti ., P. (2012). A multiple local models approach to accuracy improvement in continuous glucose monitoring. Diabetes Technology & Therapeutics. 14(1):74-82. doi:10.1089/dia.2011.0138 es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://online.liebertpub.com/doi/pdfplus/10.1089/dia.2011.0138 es_ES
dc.description.upvformatpinicio 74 es_ES
dc.description.upvformatpfin 82 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 208962
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Educación


This item appears in the following Collection(s)

Show simple item record