Mostrar el registro sencillo del ítem
dc.contributor.author | Aleza, Pablo | es_ES |
dc.contributor.author | Froelicher, Yann | es_ES |
dc.contributor.author | Schwarz, Sergio | es_ES |
dc.contributor.author | Agustí Fonfría, Manuel | es_ES |
dc.contributor.author | Hernández, María | es_ES |
dc.contributor.author | Juárez, José | es_ES |
dc.contributor.author | Luro, François | es_ES |
dc.contributor.author | Morillon, Raphael | es_ES |
dc.contributor.author | Navarro Lucas, Luis | es_ES |
dc.contributor.author | Ollitrault, Patrick | es_ES |
dc.date.accessioned | 2013-06-27T11:19:32Z | |
dc.date.issued | 2011-05-17 | |
dc.identifier.issn | 0305-7364 | |
dc.identifier.uri | http://hdl.handle.net/10251/30236 | |
dc.description.abstract | ¿ Background and Aims: Polyploidy is a major component of plant evolution. The citrus gene pool is essentially diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the importance of genotypic and environmental factors on tetraploid formation. ¿ Methods: Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and genotyped with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to grow all embryos contained in polyembryonic seeds of 'Tardivo di Ciaculli' mandarin, followed by characterization of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidization events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same genotype ('Carrizo' citrange; Citrus sinensis ¿ Poncirus trifoliata) from seeds collected in different tropical, subtropical and Mediterranean countries. ¿ Key Results: Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric. Significant genotypic and environmental effects were observed, as well as negative correlation between mean temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetraploids were observed for citranges cultivated in the Mediterranean area. ¿ Conclusions: Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome doubling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless triploid cultivars and have potential direct use as new rootstocks. © The Author 2011. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. | es_ES |
dc.description.sponsorship | This work was jointly financed by the AGL2008-00596-MCI and Prometeo 2008/121 Generalidad Valenciana projects and supported by the European Commission, under the FP6-2003-INCO-DEV-2 project CIBEWU (no. 015453). We thank J. A. Pina for growing plants in the greenhouse and in the field. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Oxford University Press (OUP): Policy B - Oxford Open Option A | es_ES |
dc.relation | European Commission 2008/121 | es_ES |
dc.relation.ispartof | Annals of Botany | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Apomixis | es_ES |
dc.subject | Chromosome doubling | es_ES |
dc.subject | Citrus | es_ES |
dc.subject | Flow cytometry | es_ES |
dc.subject | Polyembryony | es_ES |
dc.subject | SSR markers | es_ES |
dc.subject | Tetraploid | es_ES |
dc.subject | Annual variation | es_ES |
dc.subject | Chromosome | es_ES |
dc.subject | Cultivar | es_ES |
dc.subject | Cytology | es_ES |
dc.subject | Dicotyledon | es_ES |
dc.subject | Environmental effect | es_ES |
dc.subject | Evolutionary biology | es_ES |
dc.subject | Fruit | es_ES |
dc.subject | Gene expression | es_ES |
dc.subject | Genetic marker | es_ES |
dc.subject | Genotype | es_ES |
dc.subject | Polyploidy | es_ES |
dc.subject | Rootstock | es_ES |
dc.subject | Seedling | es_ES |
dc.subject | Allele | es_ES |
dc.subject | Article | es_ES |
dc.subject | Breeding | es_ES |
dc.subject | Cluster analysis | es_ES |
dc.subject | Diploidy | es_ES |
dc.subject | Environment | es_ES |
dc.subject | Evolution | es_ES |
dc.subject | Genetic variability | es_ES |
dc.subject | Genetics | es_ES |
dc.subject | Hybridization | es_ES |
dc.subject | Plant chromosome | es_ES |
dc.subject | Plant seed | es_ES |
dc.subject | Prenatal development | es_ES |
dc.subject | Tetraploidy | es_ES |
dc.subject | Alleles | es_ES |
dc.subject | Biological Evolution | es_ES |
dc.subject | Chromosomes, Plant | es_ES |
dc.subject | Genetic Markers | es_ES |
dc.subject | Genetic Variation | es_ES |
dc.subject | Hybridization, Genetic | es_ES |
dc.subject | Seeds | es_ES |
dc.subject | Citroncirus webberi | es_ES |
dc.subject | Citrus sinensis | es_ES |
dc.subject | Citrus sinensis x Poncirus trifoliata | es_ES |
dc.subject | Poncirus trifoliata | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1093/aob/mcr099 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2008-00596/ES/MEJORA GENETICA DE MANDARINOS A NIVEL TRIPLOIDE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.description.bibliographicCitation | Aleza, P.; Froelicher, Y.; Schwarz, S.; Agustí Fonfría, M.; Hernández, M.; Juárez, J.; Luro, F.... (2011). Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Annals of Botany. 108(1):37-50. https://doi.org/10.1093/aob/mcr099 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://aob.oxfordjournals.org/content/108/1/37.full.pdf+html | es_ES |
dc.description.upvformatpinicio | 37 | es_ES |
dc.description.upvformatpfin | 50 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 108 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 209130 | |
dc.identifier.pmid | 21586529 | en_EN |
dc.identifier.pmcid | PMC3119611 | en_EN |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Adams, K. L., & Wendel, J. F. (2005). Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 8(2), 135-141. doi:10.1016/j.pbi.2005.01.001 | es_ES |
dc.description.references | Adams, K. L., Percifield, R., & Wendel, J. F. (2004). Organ-Specific Silencing of Duplicated Genes in a Newly Synthesized Cotton Allotetraploid. Genetics, 168(4), 2217-2226. doi:10.1534/genetics.104.033522 | es_ES |
dc.description.references | Albertin, W., Brabant, P., Catrice, O., Eber, F., Jenczewski, E., Chèvre, A.-M., & Thiellement, H. (2005). Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. PROTEOMICS, 5(8), 2131-2139. doi:10.1002/pmic.200401092 | es_ES |
dc.description.references | Aleza, P., Juárez, J., Ollitrault, P., & Navarro, L. (2009). Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Reports, 28(12), 1837-1846. doi:10.1007/s00299-009-0783-2 | es_ES |
dc.description.references | Aleza, P., Juárez, J., Cuenca, J., Ollitrault, P., & Navarro, L. (2010). Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Reports, 29(9), 1023-1034. doi:10.1007/s00299-010-0888-7 | es_ES |
dc.description.references | Aleza, P., Juárez, J., Ollitrault, P., & Navarro, L. (2010). Polyembryony in non-apomictic citrus genotypes. Annals of Botany, 106(4), 533-545. doi:10.1093/aob/mcq148 | es_ES |
dc.description.references | Baack, E. J. (2005). Ecological factors influencing tetraploid establishment in snow buttercups (Ranunculus adoneus , Ranunculaceae): minority cytotype exclusion and barriers to triploid formation. American Journal of Botany, 92(11), 1827-1835. doi:10.3732/ajb.92.11.1827 | es_ES |
dc.description.references | Bacchi, O. (1943). Cytological Observations in Citrus: III. Megasporogenesis, Fertilization, and Polyembryony. Botanical Gazette, 105(2), 221-225. doi:10.1086/335210 | es_ES |
dc.description.references | Barkley, N. A., Roose, M. L., Krueger, R. R., & Federici, C. T. (2006). Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 112(8), 1519-1531. doi:10.1007/s00122-006-0255-9 | es_ES |
dc.description.references | Barrett, H. C., & Hutchison, D. J. (1978). Spontaneous tetraploidy in apomictic seedlings ofCitrus. Economic Botany, 32(1), 27-45. doi:10.1007/bf02906727 | es_ES |
dc.description.references | BRETAGNOLLE, F., & THOMPSON, J. D. (1995). Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytologist, 129(1), 1-22. doi:10.1111/j.1469-8137.1995.tb03005.x | es_ES |
dc.description.references | Chen, Z. J. (2007). Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in Plant Polyploids. Annual Review of Plant Biology, 58(1), 377-406. doi:10.1146/annurev.arplant.58.032806.103835 | es_ES |
dc.description.references | Comai, L., Tyagi, A. P., Winter, K., Holmes-Davis, R., Reynolds, S. H., Stevens, Y., & Byers, B. (2000). Phenotypic Instability and Rapid Gene Silencing in Newly Formed Arabidopsis Allotetraploids. The Plant Cell, 12(9), 1551-1567. doi:10.1105/tpc.12.9.1551 | es_ES |
dc.description.references | Cosendai, A.-C., & Hörandl, E. (2010). Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Annals of Botany, 105(3), 457-470. doi:10.1093/aob/mcp304 | es_ES |
dc.description.references | Cuenca, J., Froelicher, Y., Aleza, P., Juárez, J., Navarro, L., & Ollitrault, P. (2011). Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity, 107(5), 462-470. doi:10.1038/hdy.2011.33 | es_ES |
dc.description.references | Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606 | es_ES |
dc.description.references | Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 | es_ES |
dc.description.references | ESEN, A., & SOOST, R. K. (1971). Unexpected Triploids in Citrus: Their Origin, Identification, and Possible Use. Journal of Heredity, 62(6), 329-333. doi:10.1093/oxfordjournals.jhered.a108186 | es_ES |
dc.description.references | ESEN, A., & SOOST, R. K. (1973). Precocious Development and Germination of Spontaneous Triploid Seeds in Citrus. Journal of Heredity, 64(3), 147-154. doi:10.1093/oxfordjournals.jhered.a108373 | es_ES |
dc.description.references | ESEN, A., SOOST, R. K., & GERACI, G. (1979). Genetic evidence for the origin of diploid megagametophytes in Citrus. Journal of Heredity, 70(1), 5-8. doi:10.1093/oxfordjournals.jhered.a109188 | es_ES |
dc.description.references | Flagel, L. E., & Wendel, J. F. (2009). Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytologist, 186(1), 184-193. doi:10.1111/j.1469-8137.2009.03107.x | es_ES |
dc.description.references | FROELICHER, Y., DAMBIER, D., BASSENE, J. B., COSTANTINO, G., LOTFY, S., DIDOUT, C., … OLLITRAULT, P. (2008). Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Molecular Ecology Resources, 8(1), 119-122. doi:10.1111/j.1471-8286.2007.01893.x | es_ES |
dc.description.references | Frost, H. B. (1926). Polyembryony, heterozygosis and chimeras in citrus. Hilgardia, 1(16), 365-402. doi:10.3733/hilg.v01n16p365 | es_ES |
dc.description.references | Saúco, V. G., Martín, M. J. G., Galván, D. F., Torres, A. C., Juárez, J., & Navarro, L. (2001). Occurrence of Spontaneous Tetraploid Nucellar Mango Plants. HortScience, 36(4), 755-757. doi:10.21273/hortsci.36.4.755 | es_ES |
dc.description.references | GERACI, G., ESEN, A., & SOOST, R. K. (1975). Triploid progenies of Citrus cultivars from 2x × 2x crosses. Journal of Heredity, 66(3), 177-178. doi:10.1093/oxfordjournals.jhered.a108607 | es_ES |
dc.description.references | Grant, V. (1981). Plant Speciation. doi:10.7312/gran92318 | es_ES |
dc.description.references | Grosser, J. W., Ollitrault, P., & Olivares-Fuster, O. (2000). Somatic hybridization in citrus: An effective tool to facilitate variety improvement. In Vitro Cellular & Developmental Biology - Plant, 36(6), 434-449. doi:10.1007/s11627-000-0080-9 | es_ES |
dc.description.references | Grosser, J. W., An, H. J., Calovic, M., Lee, D. H., Chen, C., Vasconcellos, M., & Gmitter, F. G. (2010). Production of New Allotetraploid and Autotetraploid Citrus Breeding Parents: Focus on Zipperskin Mandarins. HortScience, 45(8), 1160-1163. doi:10.21273/hortsci.45.8.1160 | es_ES |
dc.description.references | HAGERUP, O. (2010). ÜBER POLYPLOIDIE IN BEZIEHUNG ZU KLIMA, ÖKOLOGIE UND PHYLOGENIE. Hereditas, 16(1-2), 19-40. doi:10.1111/j.1601-5223.1932.tb02560.x | es_ES |
dc.description.references | Harlan, J. R., & deWet, J. M. J. (1975). On Ö. Winge and a Prayer: The origins of polyploidy. The Botanical Review, 41(4), 361-390. doi:10.1007/bf02860830 | es_ES |
dc.description.references | Husband, B. C., Schemske, D. W., Burton, T. L., & Goodwillie, C. (2002). Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1509), 2565-2571. doi:10.1098/rspb.2002.2196 | es_ES |
dc.description.references | Kamiri, M., Stift, M., Srairi, I., Costantino, G., Moussadik, A. E., Hmyene, A., … Froelicher, Y. (2011). Evidence for non-disomic inheritance in a Citrus interspecific tetraploid somatic hybrid between C. reticulata and C. limon using SSR markers and cytogenetic analysis. Plant Cell Reports, 30(8), 1415-1425. doi:10.1007/s00299-011-1050-x | es_ES |
dc.description.references | Kijas, J. M. H., Thomas, M. R., Fowler, J. C. S., & Roose, M. L. (1997). Integration of trinucleotide microsatellites into a linkage map of Citrus. Theoretical and Applied Genetics, 94(5), 701-706. doi:10.1007/s001220050468 | es_ES |
dc.description.references | Koltunow, A. M. (1993). Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. The Plant Cell, 1425-1437. doi:10.1105/tpc.5.10.1425 | es_ES |
dc.description.references | Koltunow, A. M., & Grossniklaus, U. (2003). APOMIXIS: A Developmental Perspective. Annual Review of Plant Biology, 54(1), 547-574. doi:10.1146/annurev.arplant.54.110901.160842 | es_ES |
dc.description.references | Krug, C. A. (1943). Chromosome Numbers in the Subfamily Aurantioideae with Special Reference to the Genus Citrus. Botanical Gazette, 104(4), 602-611. doi:10.1086/335173 | es_ES |
dc.description.references | LAI, Z., GROSS, B. L., ZOU, Y., ANDREWS, J., & RIESEBERG, L. H. (2006). Microarray analysis reveals differential gene expression in hybrid sunflower species. Molecular Ecology, 15(5), 1213-1227. doi:10.1111/j.1365-294x.2006.02775.x | es_ES |
dc.description.references | Landry, C. R., Hartl, D. L., & Ranz, J. M. (2007). Genome clashes in hybrids: insights from gene expression. Heredity, 99(5), 483-493. doi:10.1038/sj.hdy.6801045 | es_ES |
dc.description.references | Lee, L. (1988). Citrus polyploidy - origins and potential for cultivar improvement. Australian Journal of Agricultural Research, 39(4), 735. doi:10.1071/ar9880735 | es_ES |
dc.description.references | Luro, F., Maddy, F., Jacquemond, C., Froelicher, Y., Morillon, R., Rist, D., & Ollitrault, P. (2004). IDENTIFICATION AND EVALUATION OF DIPLOGYNY IN CLEMENTINE (CITRUS CLEMENTINA) FOR USE IN BREEDING. Acta Horticulturae, (663), 841-848. doi:10.17660/actahortic.2004.663.152 | es_ES |
dc.description.references | Luro, F. L., Costantino, G., Terol, J., Argout, X., Allario, T., Wincker, P., … Morillon, R. (2008). Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics, 9(1), 287. doi:10.1186/1471-2164-9-287 | es_ES |
dc.description.references | Manton, I. (1950). Problems of cytology and evolution in the Pteridophyta. doi:10.5962/bhl.title.4667 | es_ES |
dc.description.references | Masterson, J. (1994). Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms. Science, 264(5157), 421-424. doi:10.1126/science.264.5157.421 | es_ES |
dc.description.references | Mather, K. (1936). Segregation and linkage in autotetraploids. Journal of Genetics, 32(2), 287-314. doi:10.1007/bf02982683 | es_ES |
dc.description.references | McClintock, B. (1984). The significance of responses of the genome to challenge. Science, 226(4676), 792-801. doi:10.1126/science.15739260 | es_ES |
dc.description.references | Muller, H. J. (1914). A New Mode of Segregation in Gregory’s Tetraploid Primulas. The American Naturalist, 48(572), 508-512. doi:10.1086/279426 | es_ES |
dc.description.references | Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x | es_ES |
dc.description.references | Ollitrault, P., Dambier, D., Luro, F., & Froelicher, Y. (2008). Ploidy Manipulation for Breeding Seedless Triploid Citrus. Plant Breeding Reviews, 323-352. doi:10.1002/9780470380130.ch7 | es_ES |
dc.description.references | Osborn, T. C., Chris Pires, J., Birchler, J. A., Auger, D. L., Jeffery Chen, Z., Lee, H.-S., … Martienssen, R. A. (2003). Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 19(3), 141-147. doi:10.1016/s0168-9525(03)00015-5 | es_ES |
dc.description.references | Otto, S. P., & Whitton, J. (2000). Polyploid Incidence and Evolution. Annual Review of Genetics, 34(1), 401-437. doi:10.1146/annurev.genet.34.1.401 | es_ES |
dc.description.references | Raghuvanshi, S. S. (1962). Cytogenetical Studies in Genus Citrus. CYTOLOGIA, 27(2), 172-188. doi:10.1508/cytologia.27.172 | es_ES |
dc.description.references | Ramsey, J., & Schemske, D. W. (1998). PATHWAYS, MECHANISMS, AND RATES OF POLYPLOID FORMATION IN FLOWERING PLANTS. Annual Review of Ecology and Systematics, 29(1), 467-501. doi:10.1146/annurev.ecolsys.29.1.467 | es_ES |
dc.description.references | Ramsey, J., & Schemske, D. W. (2002). Neopolyploidy in Flowering Plants. Annual Review of Ecology and Systematics, 33(1), 589-639. doi:10.1146/annurev.ecolsys.33.010802.150437 | es_ES |
dc.description.references | Roche, D., Hanna, W. W., & Ozias-Akins, P. (2001). Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sexual Plant Reproduction, 13(6), 343-349. doi:10.1007/s004970100094 | es_ES |
dc.description.references | Saleh, B., Allario, T., Dambier, D., Ollitrault, P., & Morillon, R. (2008). Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes Rendus Biologies, 331(9), 703-710. doi:10.1016/j.crvi.2008.06.007 | es_ES |
dc.description.references | SALMON, A., AINOUCHE, M. L., & WENDEL, J. F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 14(4), 1163-1175. doi:10.1111/j.1365-294x.2005.02488.x | es_ES |
dc.description.references | Schranz, M. E., Dobes, C., Koch, M. A., & Mitchell-Olds, T. (2005). Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). American Journal of Botany, 92(11), 1797-1810. doi:10.3732/ajb.92.11.1797 | es_ES |
dc.description.references | Soltis, D. E., & Soltis, P. S. (1995). The dynamic nature of polyploid genomes. Proceedings of the National Academy of Sciences, 92(18), 8089-8091. doi:10.1073/pnas.92.18.8089 | es_ES |
dc.description.references | Stebbins, G. L. (1950). Variation and Evolution in Plants. doi:10.7312/steb94536 | es_ES |
dc.description.references | Stupar, R. M., Bhaskar, P. B., Yandell, B. S., Rensink, W. A., Hart, A. L., Ouyang, S., … Jiang, J. (2007). Phenotypic and Transcriptomic Changes Associated With Potato Autopolyploidization. Genetics, 176(4), 2055-2067. doi:10.1534/genetics.107.074286 | es_ES |
dc.description.references | Thompson, J. D., & Lumaret, R. (1992). The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends in Ecology & Evolution, 7(9), 302-307. doi:10.1016/0169-5347(92)90228-4 | es_ES |
dc.description.references | Wang, J., Tian, L., Madlung, A., Lee, H.-S., Chen, M., Lee, J. J., … Chen, Z. J. (2004). Stochastic and Epigenetic Changes of Gene Expression in Arabidopsis Polyploids. Genetics, 167(4), 1961-1973. doi:10.1534/genetics.104.027896 | es_ES |
dc.description.references | Wang, J., Tian, L., Lee, H.-S., Wei, N. E., Jiang, H., Watson, B., … Chen, Z. J. (2005). Genomewide Nonadditive Gene Regulation in Arabidopsis Allotetraploids. Genetics, 172(1), 507-517. doi:10.1534/genetics.105.047894 | es_ES |
dc.description.references | Wendel, J., & Doyle, J. (s. f.). Polyploidy and evolution in plants. Plant diversity and evolution: genotypic and phenotypic variation in higher plants, 97-117. doi:10.1079/9780851999043.0097 | es_ES |