- -

Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment

Show simple item record

Files in this item

dc.contributor.author Aleza, Pablo es_ES
dc.contributor.author Froelicher, Yann es_ES
dc.contributor.author Schwarz, Sergio es_ES
dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.contributor.author Hernández, María es_ES
dc.contributor.author Juárez, José es_ES
dc.contributor.author Luro, François es_ES
dc.contributor.author Morillon, Raphael es_ES
dc.contributor.author Navarro Lucas, Luis es_ES
dc.contributor.author Ollitrault, Patrick es_ES
dc.date.accessioned 2013-06-27T11:19:32Z
dc.date.issued 2011-05-17
dc.identifier.issn 0305-7364
dc.identifier.uri http://hdl.handle.net/10251/30236
dc.description.abstract ¿ Background and Aims: Polyploidy is a major component of plant evolution. The citrus gene pool is essentially diploid but tetraploid plants are frequently encountered in seedlings of diploid apomictic genotypes. The main objectives of the present study were to establish the origin of these tetraploid plants and to ascertain the importance of genotypic and environmental factors on tetraploid formation. ¿ Methods: Tetraploid seedlings from 30 diploid apomictic genotypes were selected by flow cytometry and genotyped with 24 single sequence repeat (SSR) markers to analyse their genetic origin. Embryo rescue was used to grow all embryos contained in polyembryonic seeds of 'Tardivo di Ciaculli' mandarin, followed by characterization of the plantlets obtained by flow cytometry and SSR markers to accurately establish the rate of tetraploidization events and their potential tissue location. Inter-annual variations in tetraploid seedling rates were analysed for seven genotypes. Variation in tetraploid plantlet rates was analysed between different seedlings of the same genotype ('Carrizo' citrange; Citrus sinensis ¿ Poncirus trifoliata) from seeds collected in different tropical, subtropical and Mediterranean countries. ¿ Key Results: Tetraploid plants were obtained for all the studied diploid genotypes, except for four mandarins. All tetraploid plants were identical to their diploid maternal line for SSR markers and were not cytochimeric. Significant genotypic and environmental effects were observed, as well as negative correlation between mean temperature during the flowering period and tetraploidy seedling rates. The higher frequencies (20 %) of tetraploids were observed for citranges cultivated in the Mediterranean area. ¿ Conclusions: Tetraploidization by chromosome doubling of nucellar cells are frequent events in apomictic citrus, and are affected by both genotypic and environmental factors. Colder conditions in marginal climatic areas appear to favour the expression of tetraploidization. Tetraploid genotypes arising from chromosome doubling of apomictic citrus are extensively being used as parents in breeding programmes to develop seedless triploid cultivars and have potential direct use as new rootstocks. © The Author 2011. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. es_ES
dc.description.sponsorship This work was jointly financed by the AGL2008-00596-MCI and Prometeo 2008/121 Generalidad Valenciana projects and supported by the European Commission, under the FP6-2003-INCO-DEV-2 project CIBEWU (no. 015453). We thank J. A. Pina for growing plants in the greenhouse and in the field. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP): Policy B - Oxford Open Option A es_ES
dc.relation European Commission 2008/121 es_ES
dc.relation.ispartof Annals of Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Apomixis es_ES
dc.subject Chromosome doubling es_ES
dc.subject Citrus es_ES
dc.subject Flow cytometry es_ES
dc.subject Polyembryony es_ES
dc.subject SSR markers es_ES
dc.subject Tetraploid es_ES
dc.subject Annual variation es_ES
dc.subject Chromosome es_ES
dc.subject Cultivar es_ES
dc.subject Cytology es_ES
dc.subject Dicotyledon es_ES
dc.subject Environmental effect es_ES
dc.subject Evolutionary biology es_ES
dc.subject Fruit es_ES
dc.subject Gene expression es_ES
dc.subject Genetic marker es_ES
dc.subject Genotype es_ES
dc.subject Polyploidy es_ES
dc.subject Rootstock es_ES
dc.subject Seedling es_ES
dc.subject Allele es_ES
dc.subject Article es_ES
dc.subject Breeding es_ES
dc.subject Cluster analysis es_ES
dc.subject Diploidy es_ES
dc.subject Environment es_ES
dc.subject Evolution es_ES
dc.subject Genetic variability es_ES
dc.subject Genetics es_ES
dc.subject Hybridization es_ES
dc.subject Plant chromosome es_ES
dc.subject Plant seed es_ES
dc.subject Prenatal development es_ES
dc.subject Tetraploidy es_ES
dc.subject Alleles es_ES
dc.subject Biological Evolution es_ES
dc.subject Chromosomes, Plant es_ES
dc.subject Genetic Markers es_ES
dc.subject Genetic Variation es_ES
dc.subject Hybridization, Genetic es_ES
dc.subject Seeds es_ES
dc.subject Citroncirus webberi es_ES
dc.subject Citrus sinensis es_ES
dc.subject Citrus sinensis x Poncirus trifoliata es_ES
dc.subject Poncirus trifoliata es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1093/aob/mcr099
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-00596/ES/MEJORA GENETICA DE MANDARINOS A NIVEL TRIPLOIDE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Aleza, P.; Froelicher, Y.; Schwarz, S.; Agustí Fonfría, M.; Hernández, M.; Juárez, J.; Luro, F.... (2011). Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Annals of Botany. 108(1):37-50. https://doi.org/10.1093/aob/mcr099 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://aob.oxfordjournals.org/content/108/1/37.full.pdf+html es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 50 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 108 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 209130
dc.identifier.pmid 21586529 en_EN
dc.identifier.pmcid PMC3119611 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Adams, K. L., & Wendel, J. F. (2005). Polyploidy and genome evolution in plants. Current Opinion in Plant Biology, 8(2), 135-141. doi:10.1016/j.pbi.2005.01.001 es_ES
dc.description.references Adams, K. L., Percifield, R., & Wendel, J. F. (2004). Organ-Specific Silencing of Duplicated Genes in a Newly Synthesized Cotton Allotetraploid. Genetics, 168(4), 2217-2226. doi:10.1534/genetics.104.033522 es_ES
dc.description.references Albertin, W., Brabant, P., Catrice, O., Eber, F., Jenczewski, E., Chèvre, A.-M., & Thiellement, H. (2005). Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. PROTEOMICS, 5(8), 2131-2139. doi:10.1002/pmic.200401092 es_ES
dc.description.references Aleza, P., Juárez, J., Ollitrault, P., & Navarro, L. (2009). Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Reports, 28(12), 1837-1846. doi:10.1007/s00299-009-0783-2 es_ES
dc.description.references Aleza, P., Juárez, J., Cuenca, J., Ollitrault, P., & Navarro, L. (2010). Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Reports, 29(9), 1023-1034. doi:10.1007/s00299-010-0888-7 es_ES
dc.description.references Aleza, P., Juárez, J., Ollitrault, P., & Navarro, L. (2010). Polyembryony in non-apomictic citrus genotypes. Annals of Botany, 106(4), 533-545. doi:10.1093/aob/mcq148 es_ES
dc.description.references Baack, E. J. (2005). Ecological factors influencing tetraploid establishment in snow buttercups (Ranunculus adoneus , Ranunculaceae): minority cytotype exclusion and barriers to triploid formation. American Journal of Botany, 92(11), 1827-1835. doi:10.3732/ajb.92.11.1827 es_ES
dc.description.references Bacchi, O. (1943). Cytological Observations in Citrus: III. Megasporogenesis, Fertilization, and Polyembryony. Botanical Gazette, 105(2), 221-225. doi:10.1086/335210 es_ES
dc.description.references Barkley, N. A., Roose, M. L., Krueger, R. R., & Federici, C. T. (2006). Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theoretical and Applied Genetics, 112(8), 1519-1531. doi:10.1007/s00122-006-0255-9 es_ES
dc.description.references Barrett, H. C., & Hutchison, D. J. (1978). Spontaneous tetraploidy in apomictic seedlings ofCitrus. Economic Botany, 32(1), 27-45. doi:10.1007/bf02906727 es_ES
dc.description.references BRETAGNOLLE, F., & THOMPSON, J. D. (1995). Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytologist, 129(1), 1-22. doi:10.1111/j.1469-8137.1995.tb03005.x es_ES
dc.description.references Chen, Z. J. (2007). Genetic and Epigenetic Mechanisms for Gene Expression and Phenotypic Variation in Plant Polyploids. Annual Review of Plant Biology, 58(1), 377-406. doi:10.1146/annurev.arplant.58.032806.103835 es_ES
dc.description.references Comai, L., Tyagi, A. P., Winter, K., Holmes-Davis, R., Reynolds, S. H., Stevens, Y., & Byers, B. (2000). Phenotypic Instability and Rapid Gene Silencing in Newly Formed Arabidopsis Allotetraploids. The Plant Cell, 12(9), 1551-1567. doi:10.1105/tpc.12.9.1551 es_ES
dc.description.references Cosendai, A.-C., & Hörandl, E. (2010). Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Annals of Botany, 105(3), 457-470. doi:10.1093/aob/mcp304 es_ES
dc.description.references Cuenca, J., Froelicher, Y., Aleza, P., Juárez, J., Navarro, L., & Ollitrault, P. (2011). Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Heredity, 107(5), 462-470. doi:10.1038/hdy.2011.33 es_ES
dc.description.references Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606 es_ES
dc.description.references Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670 es_ES
dc.description.references ESEN, A., & SOOST, R. K. (1971). Unexpected Triploids in Citrus: Their Origin, Identification, and Possible Use. Journal of Heredity, 62(6), 329-333. doi:10.1093/oxfordjournals.jhered.a108186 es_ES
dc.description.references ESEN, A., & SOOST, R. K. (1973). Precocious Development and Germination of Spontaneous Triploid Seeds in Citrus. Journal of Heredity, 64(3), 147-154. doi:10.1093/oxfordjournals.jhered.a108373 es_ES
dc.description.references ESEN, A., SOOST, R. K., & GERACI, G. (1979). Genetic evidence for the origin of diploid megagametophytes in Citrus. Journal of Heredity, 70(1), 5-8. doi:10.1093/oxfordjournals.jhered.a109188 es_ES
dc.description.references Flagel, L. E., & Wendel, J. F. (2009). Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytologist, 186(1), 184-193. doi:10.1111/j.1469-8137.2009.03107.x es_ES
dc.description.references FROELICHER, Y., DAMBIER, D., BASSENE, J. B., COSTANTINO, G., LOTFY, S., DIDOUT, C., … OLLITRAULT, P. (2008). Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Molecular Ecology Resources, 8(1), 119-122. doi:10.1111/j.1471-8286.2007.01893.x es_ES
dc.description.references Frost, H. B. (1926). Polyembryony, heterozygosis and chimeras in citrus. Hilgardia, 1(16), 365-402. doi:10.3733/hilg.v01n16p365 es_ES
dc.description.references Saúco, V. G., Martín, M. J. G., Galván, D. F., Torres, A. C., Juárez, J., & Navarro, L. (2001). Occurrence of Spontaneous Tetraploid Nucellar Mango Plants. HortScience, 36(4), 755-757. doi:10.21273/hortsci.36.4.755 es_ES
dc.description.references GERACI, G., ESEN, A., & SOOST, R. K. (1975). Triploid progenies of Citrus cultivars from 2x × 2x crosses. Journal of Heredity, 66(3), 177-178. doi:10.1093/oxfordjournals.jhered.a108607 es_ES
dc.description.references Grant, V. (1981). Plant Speciation. doi:10.7312/gran92318 es_ES
dc.description.references Grosser, J. W., Ollitrault, P., & Olivares-Fuster, O. (2000). Somatic hybridization in citrus: An effective tool to facilitate variety improvement. In Vitro Cellular & Developmental Biology - Plant, 36(6), 434-449. doi:10.1007/s11627-000-0080-9 es_ES
dc.description.references Grosser, J. W., An, H. J., Calovic, M., Lee, D. H., Chen, C., Vasconcellos, M., & Gmitter, F. G. (2010). Production of New Allotetraploid and Autotetraploid Citrus Breeding Parents: Focus on Zipperskin Mandarins. HortScience, 45(8), 1160-1163. doi:10.21273/hortsci.45.8.1160 es_ES
dc.description.references HAGERUP, O. (2010). ÜBER POLYPLOIDIE IN BEZIEHUNG ZU KLIMA, ÖKOLOGIE UND PHYLOGENIE. Hereditas, 16(1-2), 19-40. doi:10.1111/j.1601-5223.1932.tb02560.x es_ES
dc.description.references Harlan, J. R., & deWet, J. M. J. (1975). On Ö. Winge and a Prayer: The origins of polyploidy. The Botanical Review, 41(4), 361-390. doi:10.1007/bf02860830 es_ES
dc.description.references Husband, B. C., Schemske, D. W., Burton, T. L., & Goodwillie, C. (2002). Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1509), 2565-2571. doi:10.1098/rspb.2002.2196 es_ES
dc.description.references Kamiri, M., Stift, M., Srairi, I., Costantino, G., Moussadik, A. E., Hmyene, A., … Froelicher, Y. (2011). Evidence for non-disomic inheritance in a Citrus interspecific tetraploid somatic hybrid between C. reticulata and C. limon using SSR markers and cytogenetic analysis. Plant Cell Reports, 30(8), 1415-1425. doi:10.1007/s00299-011-1050-x es_ES
dc.description.references Kijas, J. M. H., Thomas, M. R., Fowler, J. C. S., & Roose, M. L. (1997). Integration of trinucleotide microsatellites into a linkage map of Citrus. Theoretical and Applied Genetics, 94(5), 701-706. doi:10.1007/s001220050468 es_ES
dc.description.references Koltunow, A. M. (1993). Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. The Plant Cell, 1425-1437. doi:10.1105/tpc.5.10.1425 es_ES
dc.description.references Koltunow, A. M., & Grossniklaus, U. (2003). APOMIXIS: A Developmental Perspective. Annual Review of Plant Biology, 54(1), 547-574. doi:10.1146/annurev.arplant.54.110901.160842 es_ES
dc.description.references Krug, C. A. (1943). Chromosome Numbers in the Subfamily Aurantioideae with Special Reference to the Genus Citrus. Botanical Gazette, 104(4), 602-611. doi:10.1086/335173 es_ES
dc.description.references LAI, Z., GROSS, B. L., ZOU, Y., ANDREWS, J., & RIESEBERG, L. H. (2006). Microarray analysis reveals differential gene expression in hybrid sunflower species. Molecular Ecology, 15(5), 1213-1227. doi:10.1111/j.1365-294x.2006.02775.x es_ES
dc.description.references Landry, C. R., Hartl, D. L., & Ranz, J. M. (2007). Genome clashes in hybrids: insights from gene expression. Heredity, 99(5), 483-493. doi:10.1038/sj.hdy.6801045 es_ES
dc.description.references Lee, L. (1988). Citrus polyploidy - origins and potential for cultivar improvement. Australian Journal of Agricultural Research, 39(4), 735. doi:10.1071/ar9880735 es_ES
dc.description.references Luro, F., Maddy, F., Jacquemond, C., Froelicher, Y., Morillon, R., Rist, D., & Ollitrault, P. (2004). IDENTIFICATION AND EVALUATION OF DIPLOGYNY IN CLEMENTINE (CITRUS CLEMENTINA) FOR USE IN BREEDING. Acta Horticulturae, (663), 841-848. doi:10.17660/actahortic.2004.663.152 es_ES
dc.description.references Luro, F. L., Costantino, G., Terol, J., Argout, X., Allario, T., Wincker, P., … Morillon, R. (2008). Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics, 9(1), 287. doi:10.1186/1471-2164-9-287 es_ES
dc.description.references Manton, I. (1950). Problems of cytology and evolution in the Pteridophyta. doi:10.5962/bhl.title.4667 es_ES
dc.description.references Masterson, J. (1994). Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms. Science, 264(5157), 421-424. doi:10.1126/science.264.5157.421 es_ES
dc.description.references Mather, K. (1936). Segregation and linkage in autotetraploids. Journal of Genetics, 32(2), 287-314. doi:10.1007/bf02982683 es_ES
dc.description.references McClintock, B. (1984). The significance of responses of the genome to challenge. Science, 226(4676), 792-801. doi:10.1126/science.15739260 es_ES
dc.description.references Muller, H. J. (1914). A New Mode of Segregation in Gregory’s Tetraploid Primulas. The American Naturalist, 48(572), 508-512. doi:10.1086/279426 es_ES
dc.description.references Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x es_ES
dc.description.references Ollitrault, P., Dambier, D., Luro, F., & Froelicher, Y. (2008). Ploidy Manipulation for Breeding Seedless Triploid Citrus. Plant Breeding Reviews, 323-352. doi:10.1002/9780470380130.ch7 es_ES
dc.description.references Osborn, T. C., Chris Pires, J., Birchler, J. A., Auger, D. L., Jeffery Chen, Z., Lee, H.-S., … Martienssen, R. A. (2003). Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 19(3), 141-147. doi:10.1016/s0168-9525(03)00015-5 es_ES
dc.description.references Otto, S. P., & Whitton, J. (2000). Polyploid Incidence and Evolution. Annual Review of Genetics, 34(1), 401-437. doi:10.1146/annurev.genet.34.1.401 es_ES
dc.description.references Raghuvanshi, S. S. (1962). Cytogenetical Studies in Genus Citrus. CYTOLOGIA, 27(2), 172-188. doi:10.1508/cytologia.27.172 es_ES
dc.description.references Ramsey, J., & Schemske, D. W. (1998). PATHWAYS, MECHANISMS, AND RATES OF POLYPLOID FORMATION IN FLOWERING PLANTS. Annual Review of Ecology and Systematics, 29(1), 467-501. doi:10.1146/annurev.ecolsys.29.1.467 es_ES
dc.description.references Ramsey, J., & Schemske, D. W. (2002). Neopolyploidy in Flowering Plants. Annual Review of Ecology and Systematics, 33(1), 589-639. doi:10.1146/annurev.ecolsys.33.010802.150437 es_ES
dc.description.references Roche, D., Hanna, W. W., & Ozias-Akins, P. (2001). Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sexual Plant Reproduction, 13(6), 343-349. doi:10.1007/s004970100094 es_ES
dc.description.references Saleh, B., Allario, T., Dambier, D., Ollitrault, P., & Morillon, R. (2008). Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. Comptes Rendus Biologies, 331(9), 703-710. doi:10.1016/j.crvi.2008.06.007 es_ES
dc.description.references SALMON, A., AINOUCHE, M. L., & WENDEL, J. F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 14(4), 1163-1175. doi:10.1111/j.1365-294x.2005.02488.x es_ES
dc.description.references Schranz, M. E., Dobes, C., Koch, M. A., & Mitchell-Olds, T. (2005). Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). American Journal of Botany, 92(11), 1797-1810. doi:10.3732/ajb.92.11.1797 es_ES
dc.description.references Soltis, D. E., & Soltis, P. S. (1995). The dynamic nature of polyploid genomes. Proceedings of the National Academy of Sciences, 92(18), 8089-8091. doi:10.1073/pnas.92.18.8089 es_ES
dc.description.references Stebbins, G. L. (1950). Variation and Evolution in Plants. doi:10.7312/steb94536 es_ES
dc.description.references Stupar, R. M., Bhaskar, P. B., Yandell, B. S., Rensink, W. A., Hart, A. L., Ouyang, S., … Jiang, J. (2007). Phenotypic and Transcriptomic Changes Associated With Potato Autopolyploidization. Genetics, 176(4), 2055-2067. doi:10.1534/genetics.107.074286 es_ES
dc.description.references Thompson, J. D., & Lumaret, R. (1992). The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends in Ecology & Evolution, 7(9), 302-307. doi:10.1016/0169-5347(92)90228-4 es_ES
dc.description.references Wang, J., Tian, L., Madlung, A., Lee, H.-S., Chen, M., Lee, J. J., … Chen, Z. J. (2004). Stochastic and Epigenetic Changes of Gene Expression in Arabidopsis Polyploids. Genetics, 167(4), 1961-1973. doi:10.1534/genetics.104.027896 es_ES
dc.description.references Wang, J., Tian, L., Lee, H.-S., Wei, N. E., Jiang, H., Watson, B., … Chen, Z. J. (2005). Genomewide Nonadditive Gene Regulation in Arabidopsis Allotetraploids. Genetics, 172(1), 507-517. doi:10.1534/genetics.105.047894 es_ES
dc.description.references Wendel, J., & Doyle, J. (s. f.). Polyploidy and evolution in plants. Plant diversity and evolution: genotypic and phenotypic variation in higher plants, 97-117. doi:10.1079/9780851999043.0097 es_ES


This item appears in the following Collection(s)

Show simple item record