Mostrar el registro sencillo del ítem
dc.contributor.author | Del Campo Acosta, Ricardo | es_ES |
dc.contributor.author | Fernández Carrión, Antonio | es_ES |
dc.contributor.author | Mayoral, Fernando | es_ES |
dc.contributor.author | Naranjo, Francisco | es_ES |
dc.contributor.author | Sánchez Pérez, Enrique Alfonso | |
dc.date.accessioned | 2013-07-02T06:38:40Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1439-8516 | |
dc.identifier.uri | http://hdl.handle.net/10251/30328 | |
dc.description.abstract | [EN] Let (Omega, Sigma) be a measurable space and m(0) : Sigma -> X-0 and m(1) : Sigma -> X-1 be positive vector measures with values in the Banach Kothe function spaces X-0 and X-1. If 0 < alpha < 1, we define a new vector measure [m(0), m(1)](alpha) with values in the Calderon lattice interpolation space (X01-alpha X1 alpha) and we analyze the space of integrable functions with respect to measure [m(0), m(1)](alpha) in order to prove suitable extensions of the classical Stein-Weiss formulas that hold for the complex interpolation of L-p-spaces. Since each p-convex order continuous Kothe function space with weak order unit can be represented as a space of p-integrable functions with respect to a vector measure, we provide in this way a technique to obtain representations of the corresponding complex interpolation spaces. As applications, we provide a Riesz-Thorin theorem for spaces of p-integrable functions with respect to vector measures and a formula for representing the interpolation of the injective tensor product of such spaces. | es_ES |
dc.description.sponsorship | Supported by La Junta de Andalucia, D.G.I. under projects MTM2006-11690-C02, MTM2009-14483-C02 (M.E.C. Spain) and FEDER | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag | es_ES |
dc.relation.ispartof | Acta Mathematica Sinica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Interpolation | es_ES |
dc.subject | Banach function space | es_ES |
dc.subject | Vector measure | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Interpolation of Vector Measures | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s10114-011-9542-8 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MTM2006-11690-C02/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Del Campo Acosta, R.; Fernández Carrión, A.; Mayoral, F.; Naranjo, F.; Sánchez Pérez, EA. (2011). Interpolation of Vector Measures. Acta Mathematica Sinica. 27(1):119-134. https://doi.org/10.1007/s10114-011-9542-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10114-011-9542-8 | es_ES |
dc.description.upvformatpinicio | 119 | es_ES |
dc.description.upvformatpfin | 134 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 212749 | |
dc.identifier.eissn | 1439-7617 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Stein, E. M., Weiss, G.: Interpolation of operators with change of measures. Trans. Amer. Math. Soc., 87, 159–172 (1958) | es_ES |
dc.description.references | Bergh, J., Löfström, J.: Interpolation Spaces, An Introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin, 1976 | es_ES |
dc.description.references | Calderón, A. P.: Intermediate spaces and interpolation, the complex method. Studia Math., 24, 113–190, (1964) | es_ES |
dc.description.references | Curbera, G. P.: Operators into L 1 of a vector measure and applications to Banach lattices. Math. Ann., 293, 317–330 (1992) | es_ES |
dc.description.references | Fernández, A., Mayoral, F., Naranjo, F., et al.: Spaces of p-integrable functions with respect to a vector measure. Positivity, 10, 1–16 (2006) | es_ES |
dc.description.references | Sánchez-Pérez, E. A.: Compactness arguments for spaces of p-integrable functions with respect to a vector measure and factorization of operators through Lebesgue-Bochner spaces. Illinois J. Math., 45, 907–923 (2001) | es_ES |
dc.description.references | Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II, Function Spaces, Ergebnisse der Mathematik und ihre Grenzgebiete, 97, Springer-Verlag, Berlin, Heidelberg, New York, 1979 | es_ES |
dc.description.references | Lozanovskiĭ, G. Ja.: Certain Banach lattices. Sibirsk. Mat. Ž., 10, 584–599 (1969) | es_ES |
dc.description.references | Šestakov, V. A.: Complex interpolation in Banach spaces of measurable functions. Vestnik Leningrad. Univ., 19, 64–68 (1974) | es_ES |
dc.description.references | Krein, S. G., Petunin, Ju. I., Semenov, E. M.: Interpolation of Linear Operators, Translations of Mathematical Monographs, 54, American Mathematical Society, Providence, RI, 1985 | es_ES |
dc.description.references | Reisner, S.: On two theorems of Lozanovskiĭ concerning intermediate Banach lattices, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., 1317, Springer, Berlin, 1988, 67–83 | es_ES |
dc.description.references | Diestel, J., Uhl, J. J., Jr.: Vector Measures, Mathematical Surveys, 15, American Mathematical Society, Providence, RI, 1977 | es_ES |
dc.description.references | Kluvánek, I., Knowles, G.: Vector Measures and Control Systems, North-Holland, Notas de Matemática, 58, Amsterdam, 1975 | es_ES |
dc.description.references | Lewis, D. R.: Integration with respect to vector measures. Pacific J. Math., 33, 157–165 (1970) | es_ES |
dc.description.references | Lewis, D. R.: On integrability and summability in vector spaces. Illinois J. Math., 16, 294–307 (1972) | es_ES |
dc.description.references | Fernández, A., Mayoral, F., Naranjo, F., et al.: Complex interpolation of spaces of integrable functions with respect to a vector measure. Collect. Math., 61(3), 241–252 (2010) | es_ES |
dc.description.references | Musiał, K.: A Radon-Nikodym theorem for the Bartle-Dunford-Schwartz integral. Atti Sem. Mat. Fis. Univ. Modena, XLI, 227–233 (1993) | es_ES |
dc.description.references | Kouba, O.: On the interpolation of injective or projective tensor products of Banach spaces. J. Func. Anal., 96, 38–61 (1991) | es_ES |
dc.description.references | Defant, A., Michels, C.: A complex interpolation formula for tensor products of vector valued Banach function spaces. Arch. Math., 74, 441–451 (2000) | es_ES |