Mostrar el registro sencillo del ítem
dc.contributor.author | Herrera Fernández, Antonio Manuel | es_ES |
dc.contributor.author | Izquierdo Sebastián, Joaquín | es_ES |
dc.contributor.author | Pérez García, Rafael | es_ES |
dc.contributor.author | Montalvo Arango, Idel | es_ES |
dc.date.accessioned | 2013-07-03T07:16:14Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0965-9978 | |
dc.identifier.uri | http://hdl.handle.net/10251/30406 | |
dc.description.abstract | [EN] The division of a water supply network (WSN) into isolated supply clusters aims at improving the management of the whole system. This paper deals with the application of spectral clustering to achieve this aim. A semi-supervised approach can take into account the graph structure of a network and incorporate the corresponding hydraulic constraints and the other available vector information from the WSN. Several of the disadvantages of these methodologies stem from the largeness of the most WSN and the associated computational complexity. To solve these problems, we propose subsampling graph data to run successive weak clusters and build a single robust cluster configuration. The resulting methodology has been tested in a real network and can be used to successfully partition large WSNs. | es_ES |
dc.description.sponsorship | This work has been performed with the support of project IDA-WAS, DPI2009-11591 from the Direccion General de Investigacion del Ministerio de Educacion y Ciencia (Spain) and ACOMP/2011/188 from the Conselleria de Educacio of the Generalitat Valenciana. The use of English in this paper was revised by John Rawlins. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | ELSEVIER SCI LTD | es_ES |
dc.relation.ispartof | ADVANCES IN ENGINEERING SOFTWARE | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Clustering | es_ES |
dc.subject | Graph theory | es_ES |
dc.subject | Sampling | es_ES |
dc.subject | Semi-supervised learning | es_ES |
dc.subject | Multi-agent systems | es_ES |
dc.subject | Water supply networks | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Multi-Agent Adaptive Boosting on Semi-Supervised Water Supply Clusters | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.advengsoft.2012.02.005 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2009-11591/ES/Aplicacion De Herramientas Del Analisis Inteligente De Datos En La Gestion Tecnica De Sistemas De Distribucion Y Evacuacion De Aguas/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2011%2F188/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària | es_ES |
dc.description.bibliographicCitation | Herrera Fernández, AM.; Izquierdo Sebastián, J.; Pérez García, R.; Montalvo Arango, I. (2012). Multi-Agent Adaptive Boosting on Semi-Supervised Water Supply Clusters. ADVANCES IN ENGINEERING SOFTWARE. 50:131-136. https://doi.org/10.1016/j.advengsoft.2012.02.005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.advengsoft.2012.02.005 | es_ES |
dc.description.upvformatpinicio | 131 | es_ES |
dc.description.upvformatpfin | 136 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.relation.senia | 233934 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |