Mostrar el registro sencillo del ítem
dc.contributor.author | Xifre Perez, Elisabet | es_ES |
dc.contributor.author | Doménech Gómez, José David | es_ES |
dc.contributor.author | Fenollosa Esteve, Roberto | es_ES |
dc.contributor.author | Muñoz Muñoz, Pascual | es_ES |
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.contributor.author | Meseguer Rico, Francisco Javier | es_ES |
dc.date.accessioned | 2013-07-10T10:00:44Z | |
dc.date.available | 2013-07-10T10:00:44Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/30981 | |
dc.description | [EN] This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/ 10.1364/OE.19.003185. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law | es_ES |
dc.description.abstract | A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations. © 2011 Optical Society of America. | es_ES |
dc.description.sponsorship | The authors wish to acknowledge financial support from projects FIS2009-07812; Consolider Nanolight.es 2007/0046 and Nº 1841; the Spanish Education and Science Ministry, TEC2008- 06145; the Generalitat Valenciana, project PROMETEO/2008/092 and PROMETEO/2010/043; and project Apoyo a la investigación 2009 from Universidad Politecnica de Valencia, nº reg. 4325. E. Xifré-Pérez acknowledges the financial support from the program Juan de la Cierva (Spanish Ministerio de Educación y Ciencia). J. D. Doménech acknowledges the FPI research grant BES-2009-018381. Finally we thank Prof. J. Garcia de Abajo for providing us with the MESME theoretical program we have used in the calculation of electric field intensity distribution of the Mie modes. | |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | At-wavelength | es_ES |
dc.subject | FDTD calculations | es_ES |
dc.subject | Mie resonance | es_ES |
dc.subject | Silicon waveguide | es_ES |
dc.subject | Spherical microcavity | es_ES |
dc.subject | Telecom wavelengths | es_ES |
dc.subject | Waveguides | es_ES |
dc.subject | Microcavities | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | All silicon waveguide spherical microcavity coupler device | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.19.003185 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-09-4325/ES/Filtros Opticos Basados en Coloides de Silicio/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD-2007-0046/ES/Consolider Nanolight.es/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-06145/ES/COUPLED RESONATOR OPTICAL WAVEGUIDE ENGINEERIGN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F092/ES/Tecnologias y aplicaciones avanzadas y emergentes de la fotonica de microondas (microwave photonics advanced and emergent technologies and applications)/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2009-018381-2/ES/BES-2009-018381-2/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Xifre Perez, E.; Doménech Gómez, JD.; Fenollosa Esteve, R.; Muñoz Muñoz, P.; Capmany Francoy, J.; Meseguer Rico, FJ. (2011). All silicon waveguide spherical microcavity coupler device. Optics Express. 19(4):3185-3192. https://doi.org/10.1364/OE.19.003185 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.19.003185 | es_ES |
dc.description.upvformatpinicio | 3185 | es_ES |
dc.description.upvformatpfin | 3192 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 211254 | |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | |
dc.description.references | Cai, M., Painter, O., Vahala, K. J., & Sercel, P. C. (2000). Fiber-coupled microsphere laser. Optics Letters, 25(19), 1430. doi:10.1364/ol.25.001430 | es_ES |
dc.description.references | Knight, J. C., Dubreuil, N., Sandoghdar, V., Hare, J., Lefèvre-Seguin, V., Raimond, J. M., & Haroche, S. (1995). Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 20(14), 1515. doi:10.1364/ol.20.001515 | es_ES |
dc.description.references | Lefèvre-Seguin, V., & Haroche, S. (1997). Towards cavity-QED experiments with silica microspheres. Materials Science and Engineering: B, 48(1-2), 53-58. doi:10.1016/s0921-5107(97)00080-9 | es_ES |
dc.description.references | Gorodetsky, M. L., Savchenkov, A. A., & Ilchenko, V. S. (1996). Ultimate Q of optical microsphere resonators. Optics Letters, 21(7), 453. doi:10.1364/ol.21.000453 | es_ES |
dc.description.references | Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W., & Kimble, H. J. (1998). High-Q measurements of fused-silica microspheres in the near infrared. Optics Letters, 23(4), 247. doi:10.1364/ol.23.000247 | es_ES |
dc.description.references | Vahala, K. J. (2003). Optical microcavities. Nature, 424(6950), 839-846. doi:10.1038/nature01939 | es_ES |
dc.description.references | Serpengüzel, A., & Demir, A. (2008). Silicon microspheres for near-IR communication applications. Semiconductor Science and Technology, 23(6), 064009. doi:10.1088/0268-1242/23/6/064009 | es_ES |
dc.description.references | Broaddus, D. H., Foster, M. A., Agha, I. H., Robinson, J. T., Lipson, M., & Gaeta, A. L. (2009). Silicon-waveguide-coupled high-Q chalcogenide microspheres. Optics Express, 17(8), 5998. doi:10.1364/oe.17.005998 | es_ES |
dc.description.references | Yilmaz, Y. O., Demir, A., Kurt, A., & Serpenguzel, A. (2005). Optical channel dropping with a silicon microsphere. IEEE Photonics Technology Letters, 17(8), 1662-1664. doi:10.1109/lpt.2005.850896 | es_ES |
dc.description.references | Almeida, V. R., Barrios, C. A., Panepucci, R. R., & Lipson, M. (2004). All-optical control of light on a silicon chip. Nature, 431(7012), 1081-1084. doi:10.1038/nature02921 | es_ES |
dc.description.references | Noda, S., Chutinan, A., & Imada, M. (2000). Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 407(6804), 608-610. doi:10.1038/35036532 | es_ES |
dc.description.references | Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589 | es_ES |
dc.description.references | Xifré-Pérez, E., García de Abajo, F. J., Fenollosa, R., & Meseguer, F. (2009). Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 103(10). doi:10.1103/physrevlett.103.103902 | es_ES |
dc.description.references | Conwell, P. R., Barber, P. W., & Rushforth, C. K. (1984). Resonant spectra of dielectric spheres. Journal of the Optical Society of America A, 1(1), 62. doi:10.1364/josaa.1.000062 | es_ES |
dc.description.references | García de Abajo, F. J. (1999). Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 60(8), 6086-6102. doi:10.1103/physrevb.60.6086 | es_ES |
dc.description.references | Laine, J.-P., Tapalian, C., Little, B., & Haus, H. (2001). Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler. Sensors and Actuators A: Physical, 93(1), 1-7. doi:10.1016/s0924-4247(01)00636-7 | es_ES |
dc.description.references | Panitchob, Y., Murugan, G. S., Zervas, M. N., Horak, P., Berneschi, S., Pelli, S., … Wilkinson, J. S. (2008). Whispering gallery mode spectra of channel waveguide coupled Microspheres. Optics Express, 16(15), 11066. doi:10.1364/oe.16.011066 | es_ES |
dc.description.references | Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071 | es_ES |
dc.description.references | Mukaiyama, T., Takeda, K., Miyazaki, H., Jimba, Y., & Kuwata-Gonokami, M. (1999). Tight-Binding Photonic Molecule Modes of Resonant Bispheres. Physical Review Letters, 82(23), 4623-4626. doi:10.1103/physrevlett.82.4623 | es_ES |
dc.description.references | Smith, D. D., Chang, H., & Fuller, K. A. (2003). Whispering-gallery mode splitting in coupled microresonators. Journal of the Optical Society of America B, 20(9), 1967. doi:10.1364/josab.20.001967 | es_ES |