- -

All silicon waveguide spherical microcavity coupler device

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

All silicon waveguide spherical microcavity coupler device

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Xifre Perez, Elisabet es_ES
dc.contributor.author Doménech Gómez, José David es_ES
dc.contributor.author Fenollosa Esteve, Roberto es_ES
dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2013-07-10T10:00:44Z
dc.date.available 2013-07-10T10:00:44Z
dc.date.issued 2011
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/30981
dc.description [EN] This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/ 10.1364/OE.19.003185. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations. © 2011 Optical Society of America. es_ES
dc.description.sponsorship The authors wish to acknowledge financial support from projects FIS2009-07812; Consolider Nanolight.es 2007/0046 and Nº 1841; the Spanish Education and Science Ministry, TEC2008- 06145; the Generalitat Valenciana, project PROMETEO/2008/092 and PROMETEO/2010/043; and project Apoyo a la investigación 2009 from Universidad Politecnica de Valencia, nº reg. 4325. E. Xifré-Pérez acknowledges the financial support from the program Juan de la Cierva (Spanish Ministerio de Educación y Ciencia). J. D. Doménech acknowledges the FPI research grant BES-2009-018381. Finally we thank Prof. J. Garcia de Abajo for providing us with the MESME theoretical program we have used in the calculation of electric field intensity distribution of the Mie modes.
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject At-wavelength es_ES
dc.subject FDTD calculations es_ES
dc.subject Mie resonance es_ES
dc.subject Silicon waveguide es_ES
dc.subject Spherical microcavity es_ES
dc.subject Telecom wavelengths es_ES
dc.subject Waveguides es_ES
dc.subject Microcavities es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title All silicon waveguide spherical microcavity coupler device es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.19.003185
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-09-4325/ES/Filtros Opticos Basados en Coloides de Silicio/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD-2007-0046/ES/Consolider Nanolight.es/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-06145/ES/COUPLED RESONATOR OPTICAL WAVEGUIDE ENGINEERIGN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F092/ES/Tecnologias y aplicaciones avanzadas y emergentes de la fotonica de microondas (microwave photonics advanced and emergent technologies and applications)/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BES-2009-018381-2/ES/BES-2009-018381-2/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Xifre Perez, E.; Doménech Gómez, JD.; Fenollosa Esteve, R.; Muñoz Muñoz, P.; Capmany Francoy, J.; Meseguer Rico, FJ. (2011). All silicon waveguide spherical microcavity coupler device. Optics Express. 19(4):3185-3192. https://doi.org/10.1364/OE.19.003185 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.19.003185 es_ES
dc.description.upvformatpinicio 3185 es_ES
dc.description.upvformatpfin 3192 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 211254
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia
dc.description.references Cai, M., Painter, O., Vahala, K. J., & Sercel, P. C. (2000). Fiber-coupled microsphere laser. Optics Letters, 25(19), 1430. doi:10.1364/ol.25.001430 es_ES
dc.description.references Knight, J. C., Dubreuil, N., Sandoghdar, V., Hare, J., Lefèvre-Seguin, V., Raimond, J. M., & Haroche, S. (1995). Mapping whispering-gallery modes in microspheres with a near-field probe. Optics Letters, 20(14), 1515. doi:10.1364/ol.20.001515 es_ES
dc.description.references Lefèvre-Seguin, V., & Haroche, S. (1997). Towards cavity-QED experiments with silica microspheres. Materials Science and Engineering: B, 48(1-2), 53-58. doi:10.1016/s0921-5107(97)00080-9 es_ES
dc.description.references Gorodetsky, M. L., Savchenkov, A. A., & Ilchenko, V. S. (1996). Ultimate Q of optical microsphere resonators. Optics Letters, 21(7), 453. doi:10.1364/ol.21.000453 es_ES
dc.description.references Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W., & Kimble, H. J. (1998). High-Q measurements of fused-silica microspheres in the near infrared. Optics Letters, 23(4), 247. doi:10.1364/ol.23.000247 es_ES
dc.description.references Vahala, K. J. (2003). Optical microcavities. Nature, 424(6950), 839-846. doi:10.1038/nature01939 es_ES
dc.description.references Serpengüzel, A., & Demir, A. (2008). Silicon microspheres for near-IR communication applications. Semiconductor Science and Technology, 23(6), 064009. doi:10.1088/0268-1242/23/6/064009 es_ES
dc.description.references Broaddus, D. H., Foster, M. A., Agha, I. H., Robinson, J. T., Lipson, M., & Gaeta, A. L. (2009). Silicon-waveguide-coupled high-Q chalcogenide microspheres. Optics Express, 17(8), 5998. doi:10.1364/oe.17.005998 es_ES
dc.description.references Yilmaz, Y. O., Demir, A., Kurt, A., & Serpenguzel, A. (2005). Optical channel dropping with a silicon microsphere. IEEE Photonics Technology Letters, 17(8), 1662-1664. doi:10.1109/lpt.2005.850896 es_ES
dc.description.references Almeida, V. R., Barrios, C. A., Panepucci, R. R., & Lipson, M. (2004). All-optical control of light on a silicon chip. Nature, 431(7012), 1081-1084. doi:10.1038/nature02921 es_ES
dc.description.references Noda, S., Chutinan, A., & Imada, M. (2000). Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature, 407(6804), 608-610. doi:10.1038/35036532 es_ES
dc.description.references Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589 es_ES
dc.description.references Xifré-Pérez, E., García de Abajo, F. J., Fenollosa, R., & Meseguer, F. (2009). Photonic Binding in Silicon-Colloid Microcavities. Physical Review Letters, 103(10). doi:10.1103/physrevlett.103.103902 es_ES
dc.description.references Conwell, P. R., Barber, P. W., & Rushforth, C. K. (1984). Resonant spectra of dielectric spheres. Journal of the Optical Society of America A, 1(1), 62. doi:10.1364/josaa.1.000062 es_ES
dc.description.references García de Abajo, F. J. (1999). Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 60(8), 6086-6102. doi:10.1103/physrevb.60.6086 es_ES
dc.description.references Laine, J.-P., Tapalian, C., Little, B., & Haus, H. (2001). Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler. Sensors and Actuators A: Physical, 93(1), 1-7. doi:10.1016/s0924-4247(01)00636-7 es_ES
dc.description.references Panitchob, Y., Murugan, G. S., Zervas, M. N., Horak, P., Berneschi, S., Pelli, S., … Wilkinson, J. S. (2008). Whispering gallery mode spectra of channel waveguide coupled Microspheres. Optics Express, 16(15), 11066. doi:10.1364/oe.16.011066 es_ES
dc.description.references Taillaert, D., Van Laere, F., Ayre, M., Bogaerts, W., Van Thourhout, D., Bienstman, P., & Baets, R. (2006). Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Japanese Journal of Applied Physics, 45(8A), 6071-6077. doi:10.1143/jjap.45.6071 es_ES
dc.description.references Mukaiyama, T., Takeda, K., Miyazaki, H., Jimba, Y., & Kuwata-Gonokami, M. (1999). Tight-Binding Photonic Molecule Modes of Resonant Bispheres. Physical Review Letters, 82(23), 4623-4626. doi:10.1103/physrevlett.82.4623 es_ES
dc.description.references Smith, D. D., Chang, H., & Fuller, K. A. (2003). Whispering-gallery mode splitting in coupled microresonators. Journal of the Optical Society of America B, 20(9), 1967. doi:10.1364/josab.20.001967 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem