Mostrar el registro sencillo del ítem
dc.contributor.author | García Chocano, Víctor Manuel | es_ES |
dc.contributor.author | Cabrera García, Suitberto | es_ES |
dc.contributor.author | Sánchez-Dehesa Moreno-Cid, José | es_ES |
dc.date.accessioned | 2013-07-10T12:41:01Z | |
dc.date.issued | 2012-10-29 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.uri | http://hdl.handle.net/10251/30992 | |
dc.description.abstract | Absorption of broadband noise by sonic crystals consisting of microperforated cylindrical shells is proposed and experimentally demonstrated. The theoretical study has been performed in the framework of multiple scattering method, where a model for the T matrix of the microperforated shells has been developed. It has been predicted an extraordinary broadband sound absorption that is explained in terms of the multiple scattering phenomena occurring at the surfaces of the absorptive units-the microperforated panels. Our proposal has been supported by experiments performed on a structure consisting of 3 rows of cylindrical shells 3 meters height. © 2012 American Institute of Physics. | es_ES |
dc.description.sponsorship | This work has been partially supported by the USA Office of Naval Research. We acknowledge D. Torrent for useful discussions. We thank A. Climente, R. Gracia-Salgado, E. Reyes-Ayona and F. Cervera for their technical help in building the barrier. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | Applied Physics Letters | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Broadband noise | es_ES |
dc.subject | Broadband sound absorption | es_ES |
dc.subject | Cylindrical shell | es_ES |
dc.subject | Microperforated panels | es_ES |
dc.subject | Multiple scattering method | es_ES |
dc.subject | Scattering phenomenon | es_ES |
dc.subject | Sonic crystals | es_ES |
dc.subject | T matrix | es_ES |
dc.subject | Acoustic wave absorption | es_ES |
dc.subject | Multiple scattering | es_ES |
dc.subject | Sound insulating materials | es_ES |
dc.subject | Shells (structures) | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Broadband sound absorption by lattices of microperforated cylindrical shells | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1063/1.4764560 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Grupo de Fenómenos Ondulatorios (GFO) | es_ES |
dc.description.bibliographicCitation | Garcia Chocano, VM.; Cabrera García, S.; Sánchez-Dehesa Moreno-Cid, J. (2012). Broadband sound absorption by lattices of microperforated cylindrical shells. Applied Physics Letters. 101:1-4. doi:10.1063/1.4764560 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4764560 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 4 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 101 | es_ES |
dc.relation.senia | 230134 | |
dc.identifier.eissn | 1077-3118 | |
dc.contributor.funder | Office of Naval Research | es_ES |
dc.description.references | Dowling, J. P. (1992). Sonic band structure in fluids with periodic density variations. The Journal of the Acoustical Society of America, 91(5), 2539-2543. doi:10.1121/1.402990 | es_ES |
dc.description.references | Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 | es_ES |
dc.description.references | Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 | es_ES |
dc.description.references | Goffaux, C., Maseri, F., Vasseur, J. O., Djafari-Rouhani, B., & Lambin, P. (2003). Measurements and calculations of the sound attenuation by a phononic band gap structure suitable for an insulating partition application. Applied Physics Letters, 83(2), 281-283. doi:10.1063/1.1592016 | es_ES |
dc.description.references | Caballero, D., Sánchez-Dehesa, J., Rubio, C., Mártinez-Sala, R., Sánchez-Pérez, J. V., Meseguer, F., & Llinares, J. (1999). Large two-dimensional sonic band gaps. Physical Review E, 60(6), R6316-R6319. doi:10.1103/physreve.60.r6316 | es_ES |
dc.description.references | Caballero, D., Sánchez-Dehesa, J., Martínez-Sala, R., Rubio, C., Sánchez-Pérez, J. V., Sanchis, L., & Meseguer, F. (2001). Suzuki phase in two-dimensional sonic crystals. Physical Review B, 64(6). doi:10.1103/physrevb.64.064303 | es_ES |
dc.description.references | Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715 | es_ES |
dc.description.references | Sánchez-Dehesa, J., Garcia-Chocano, V. M., Torrent, D., Cervera, F., Cabrera, S., & Simon, F. (2011). Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America, 129(3), 1173-1183. doi:10.1121/1.3531815 | es_ES |
dc.description.references | Garcı´a-Chocano, V. M., & Sánchez-Dehesa, J. (2013). Optimum control of broadband noise by arrays of cylindrical units made of a recycled material. Applied Acoustics, 74(1), 58-62. doi:10.1016/j.apacoust.2012.06.008 | es_ES |
dc.description.references | Maa, D.-Y. (1998). Potential of microperforated panel absorber. The Journal of the Acoustical Society of America, 104(5), 2861-2866. doi:10.1121/1.423870 | es_ES |
dc.description.references | Ho, K. M., Cheng, C. K., Yang, Z., Zhang, X. X., & Sheng, P. (2003). Broadband locally resonant sonic shields. Applied Physics Letters, 83(26), 5566-5568. doi:10.1063/1.1637152 | es_ES |
dc.description.references | Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W., & Sheng, P. (2012). Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communications, 3(1). doi:10.1038/ncomms1758 | es_ES |
dc.description.references | Allard, J. F. (1993). Propagation of Sound in Porous Media. doi:10.1007/978-94-011-1866-8 | es_ES |
dc.description.references | Allam, S., & Åbom, M. (2011). A New Type of Muffler Based on Microperforated Tubes. Journal of Vibration and Acoustics, 133(3). doi:10.1115/1.4002956 | es_ES |
dc.description.references | Ingard, U. (1953). On the Theory and Design of Acoustic Resonators. The Journal of the Acoustical Society of America, 25(6), 1037-1061. doi:10.1121/1.1907235 | es_ES |
dc.description.references | Sanchis, L., Håkansson, A., Cervera, F., & Sánchez-Dehesa, J. (2003). Acoustic interferometers based on two-dimensional arrays of rigid cylinders in air. Physical Review B, 67(3). doi:10.1103/physrevb.67.035422 | es_ES |