Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz Muñoz, Pascual | es_ES |
dc.contributor.author | Garcia-Olcina, R. | es_ES |
dc.contributor.author | Habib, C. | es_ES |
dc.contributor.author | Chen, L. R. | es_ES |
dc.contributor.author | Leijtens, X. J. M. | es_ES |
dc.contributor.author | de Vries, T. | es_ES |
dc.contributor.author | Robbins, D. | es_ES |
dc.contributor.author | Capmany Francoy, José | es_ES |
dc.date.accessioned | 2013-07-11T11:32:04Z | |
dc.date.available | 2013-07-11T11:32:04Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 1094-4087 | |
dc.identifier.uri | http://hdl.handle.net/10251/31044 | |
dc.description | This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.013540. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law | es_ES |
dc.description.abstract | In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm 2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster. © 2011 Optical Society of America. | es_ES |
dc.description.sponsorship | The activities have been carried out in the framework of the Joint Research Activity (JRA) 'Active-phased Arrayed Devices' (WP 44) of the European Commission FP6 Network of Excellence ePIXnet (European Network of Excellence on Photonic Integrated Components and Circuits), Project Reference: 004525, http://www.epixnet.org/. This work has been partially funded through the Spanish Plan Nacional de I+D+i 2008-2011 project TEC2008-06145/TEC. It has also been partially supported by the Canadian Institute for Photonic Innovations. Devices are presently being fabricated through the InP Photonic Integration Platform JePPIX (coordinator D J Robbins), at the COBRA fab, http://www.jeppix.eu/ | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Optics Express | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Discrete components | es_ES |
dc.subject | Experimental characterization | es_ES |
dc.subject | InP | es_ES |
dc.subject | Integration scheme | es_ES |
dc.subject | Label swapping | es_ES |
dc.subject | Monolithically integrated | es_ES |
dc.subject | Optical labels | es_ES |
dc.subject | Optical packet networks | es_ES |
dc.subject | Spectral amplitude | es_ES |
dc.subject | Indium phosphide | es_ES |
dc.subject | Monolithic integrated circuits | es_ES |
dc.subject | Packet networks | es_ES |
dc.subject | Integration | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/OE.19.013540 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP6/004525/EU/European Network of Excellence on Photonic Integrated Components and Circuits/ePIXnet/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2008-06145/ES/COUPLED RESONATOR OPTICAL WAVEGUIDE ENGINEERIGN/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Muñoz Muñoz, P.; Garcia-Olcina, R.; Habib, C.; Chen, LR.; Leijtens, XJM.; De Vries, T.; Robbins, D.... (2011). Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP. Optics Express. 19(14):13540-13550. https://doi.org/10.1364/OE.19.013540 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1364/OE.19.013540 | es_ES |
dc.description.upvformatpinicio | 13540 | es_ES |
dc.description.upvformatpfin | 13550 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.senia | 213338 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Canadian Institute for Photonic Innovations | es_ES |
dc.description.references | Yoo, S. J. B. (2006). Optical Packet and Burst Switching Technologies for the Future Photonic Internet. Journal of Lightwave Technology, 24(12), 4468-4492. doi:10.1109/jlt.2006.886060 | es_ES |
dc.description.references | Blumenthal, D. J., Olsson, B.-E., Rossi, G., Dimmick, T. E., Rau, L., Masanovic, M., … Barton, J. (2000). All-optical label swapping networks and technologies. Journal of Lightwave Technology, 18(12), 2058-2075. doi:10.1109/50.908817 | es_ES |
dc.description.references | Srivatsa, A., d. Waardt, H., Hill, M. T., Khoe, G. D., & Dorren, H. J. S. (2001). All-optical serial header processing based on two-pulse correlation. Electronics Letters, 37(4), 234. doi:10.1049/el:20010178 | es_ES |
dc.description.references | Gordon, R. E., & Chen, L. R. (2006). Demonstration of all-photonic spectral label-switching for optical MPLS networks. IEEE Photonics Technology Letters, 18(4), 586-588. doi:10.1109/lpt.2006.870188 | es_ES |
dc.description.references | Habib, C., Baby, V., Chen, L. R., Delisle-Simard, A., & LaRochelle, S. (2008). All-Optical Swapping of Spectral Amplitude Code Labels Using Nonlinear Media and Semiconductor Fiber Ring Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 14(3), 879-888. doi:10.1109/jstqe.2008.918047 | es_ES |
dc.description.references | Cole, C., Huebner, B., & Johnson, J. (2009). Photonic integration for high-volume, low-cost applications. IEEE Communications Magazine, 47(3), S16-S22. doi:10.1109/mcom.2009.4804385 | es_ES |
dc.description.references | Calabretta, N., Jung, H.-D., Llorente, J. H., Tangdiongga, E., Koonen, T. A. M. J., & Dorren, H. J. S. (2009). All-Optical Label Swapping of Scalable In-Band Address Labels and 160-Gb/s Data Packets. Journal of Lightwave Technology, 27(3), 214-223. doi:10.1109/jlt.2008.2009319 | es_ES |
dc.description.references | Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 | es_ES |
dc.description.references | Eisenstein, G. (1989). Semiconductor optical amplifiers. IEEE Circuits and Devices Magazine, 5(4), 25-30. doi:10.1109/101.29899 | es_ES |
dc.description.references | Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 | es_ES |
dc.description.references | Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 | es_ES |
dc.description.references | Zilkie, A. J., Meier, J., Mojahedi, M., Poole, P. J., Barrios, P., Poitras, D., … Aitchison, J. S. (2007). Carrier Dynamics of Quantum-Dot, Quantum-Dash, and Quantum-Well Semiconductor Optical Amplifiers Operating at 1.55 $\mu{\hbox {m}}$. IEEE Journal of Quantum Electronics, 43(11), 982-991. doi:10.1109/jqe.2007.904474 | es_ES |