- -

Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Muñoz, Pascual es_ES
dc.contributor.author Garcia-Olcina, R. es_ES
dc.contributor.author Habib, C. es_ES
dc.contributor.author Chen, L. R. es_ES
dc.contributor.author Leijtens, X. J. M. es_ES
dc.contributor.author de Vries, T. es_ES
dc.contributor.author Robbins, D. es_ES
dc.contributor.author Capmany Francoy, José es_ES
dc.date.accessioned 2013-07-11T11:32:04Z
dc.date.available 2013-07-11T11:32:04Z
dc.date.issued 2011
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/31044
dc.description This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.013540. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm 2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster. © 2011 Optical Society of America. es_ES
dc.description.sponsorship The activities have been carried out in the framework of the Joint Research Activity (JRA) 'Active-phased Arrayed Devices' (WP 44) of the European Commission FP6 Network of Excellence ePIXnet (European Network of Excellence on Photonic Integrated Components and Circuits), Project Reference: 004525, http://www.epixnet.org/. This work has been partially funded through the Spanish Plan Nacional de I+D+i 2008-2011 project TEC2008-06145/TEC. It has also been partially supported by the Canadian Institute for Photonic Innovations. Devices are presently being fabricated through the InP Photonic Integration Platform JePPIX (coordinator D J Robbins), at the COBRA fab, http://www.jeppix.eu/ en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Discrete components es_ES
dc.subject Experimental characterization es_ES
dc.subject InP es_ES
dc.subject Integration scheme es_ES
dc.subject Label swapping es_ES
dc.subject Monolithically integrated es_ES
dc.subject Optical labels es_ES
dc.subject Optical packet networks es_ES
dc.subject Spectral amplitude es_ES
dc.subject Indium phosphide es_ES
dc.subject Monolithic integrated circuits es_ES
dc.subject Packet networks es_ES
dc.subject Integration es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.19.013540
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP6/004525/EU/European Network of Excellence on Photonic Integrated Components and Circuits/ePIXnet/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-06145/ES/COUPLED RESONATOR OPTICAL WAVEGUIDE ENGINEERIGN/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Muñoz Muñoz, P.; Garcia-Olcina, R.; Habib, C.; Chen, LR.; Leijtens, XJM.; De Vries, T.; Robbins, D.... (2011). Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP. Optics Express. 19(14):13540-13550. https://doi.org/10.1364/OE.19.013540 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.19.013540 es_ES
dc.description.upvformatpinicio 13540 es_ES
dc.description.upvformatpfin 13550 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 213338
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Canadian Institute for Photonic Innovations es_ES
dc.description.references Yoo, S. J. B. (2006). Optical Packet and Burst Switching Technologies for the Future Photonic Internet. Journal of Lightwave Technology, 24(12), 4468-4492. doi:10.1109/jlt.2006.886060 es_ES
dc.description.references Blumenthal, D. J., Olsson, B.-E., Rossi, G., Dimmick, T. E., Rau, L., Masanovic, M., … Barton, J. (2000). All-optical label swapping networks and technologies. Journal of Lightwave Technology, 18(12), 2058-2075. doi:10.1109/50.908817 es_ES
dc.description.references Srivatsa, A., d. Waardt, H., Hill, M. T., Khoe, G. D., & Dorren, H. J. S. (2001). All-optical serial header processing based on two-pulse correlation. Electronics Letters, 37(4), 234. doi:10.1049/el:20010178 es_ES
dc.description.references Gordon, R. E., & Chen, L. R. (2006). Demonstration of all-photonic spectral label-switching for optical MPLS networks. IEEE Photonics Technology Letters, 18(4), 586-588. doi:10.1109/lpt.2006.870188 es_ES
dc.description.references Habib, C., Baby, V., Chen, L. R., Delisle-Simard, A., & LaRochelle, S. (2008). All-Optical Swapping of Spectral Amplitude Code Labels Using Nonlinear Media and Semiconductor Fiber Ring Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 14(3), 879-888. doi:10.1109/jstqe.2008.918047 es_ES
dc.description.references Cole, C., Huebner, B., & Johnson, J. (2009). Photonic integration for high-volume, low-cost applications. IEEE Communications Magazine, 47(3), S16-S22. doi:10.1109/mcom.2009.4804385 es_ES
dc.description.references Calabretta, N., Jung, H.-D., Llorente, J. H., Tangdiongga, E., Koonen, T. A. M. J., & Dorren, H. J. S. (2009). All-Optical Label Swapping of Scalable In-Band Address Labels and 160-Gb/s Data Packets. Journal of Lightwave Technology, 27(3), 214-223. doi:10.1109/jlt.2008.2009319 es_ES
dc.description.references Smit, M. K., & Van Dam, C. (1996). PHASAR-based WDM-devices: Principles, design and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2(2), 236-250. doi:10.1109/2944.577370 es_ES
dc.description.references Eisenstein, G. (1989). Semiconductor optical amplifiers. IEEE Circuits and Devices Magazine, 5(4), 25-30. doi:10.1109/101.29899 es_ES
dc.description.references Munoz, P., Pastor, D., & Capmany, J. (2002). Modeling and design of arrayed waveguide gratings. Journal of Lightwave Technology, 20(4), 661-674. doi:10.1109/50.996587 es_ES
dc.description.references Soldano, L. B., & Pennings, E. C. M. (1995). Optical multi-mode interference devices based on self-imaging: principles and applications. Journal of Lightwave Technology, 13(4), 615-627. doi:10.1109/50.372474 es_ES
dc.description.references Zilkie, A. J., Meier, J., Mojahedi, M., Poole, P. J., Barrios, P., Poitras, D., … Aitchison, J. S. (2007). Carrier Dynamics of Quantum-Dot, Quantum-Dash, and Quantum-Well Semiconductor Optical Amplifiers Operating at 1.55 $\mu{\hbox {m}}$. IEEE Journal of Quantum Electronics, 43(11), 982-991. doi:10.1109/jqe.2007.904474 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem