- -

Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier

Show full item record

Sancho Durá, J.; Lloret Soler, JA.; Gasulla Mestre, I.; Sales Maicas, S.; Capmany Francoy, J. (2011). Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier. Optics Express. 19(18):17421-17426. doi:10.1364/OE.19.017421

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31045

Files in this item

Item Metadata

Title: Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier
Author: Sancho Durá, Juan Lloret Soler, Juan Antonio Gasulla Mestre, Ivana Sales Maicas, Salvador Capmany Francoy, José
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Issued date:
Abstract:
[EN] A fully tunable microwave photonic phase shifter involving a single semiconductor optical amplifier (SOA) is proposed and demonstrated. 360° microwave phase shift has been achieved by tuning the carrier wavelength and ...[+]
Subjects: Carrier wavelength , Input power , Microwave phase shift , Microwave Photonics , Numerical calculation , Tunable microwave , Microwaves , Optical switches , Phase shift , Phase shifters , Semiconductor optical amplifiers , Microwave filters
Copyrigths: Reserva de todos los derechos
Source:
Optics Express. (issn: 1094-4087 )
DOI: 10.1364/OE.19.017421
Publisher:
Optical Society of America
Publisher version: http://dx.doi.org/10.1364/OE.19.017421
Project ID: info:eu-repo/grantAgreement/EC/FP7/219299
Description: This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.19.017421. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Thanks:
The authors wish to acknowledge the financial support of the European Commission Seventh Framework Programme (FP7) project GOSPEL; the Generalitat Valenciana through the Microwave Photonics research Excellency award programme ...[+]
Type: Artículo

References

Boyd, R. W., & Gauthier, D. J. (2009). Controlling the Velocity of Light Pulses. Science, 326(5956), 1074-1077. doi:10.1126/science.1170885

Tucker, R. S., Pei-Cheng Ku, & Chang-Hasnain, C. J. (2005). Slow-light optical buffers: capabilities and fundamental limitations. Journal of Lightwave Technology, 23(12), 4046-4066. doi:10.1109/jlt.2005.853125

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 [+]
Boyd, R. W., & Gauthier, D. J. (2009). Controlling the Velocity of Light Pulses. Science, 326(5956), 1074-1077. doi:10.1126/science.1170885

Tucker, R. S., Pei-Cheng Ku, & Chang-Hasnain, C. J. (2005). Slow-light optical buffers: capabilities and fundamental limitations. Journal of Lightwave Technology, 23(12), 4046-4066. doi:10.1109/jlt.2005.853125

Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89

Gehring, G. M., Boyd, R. W., Gaeta, A. L., Gauthier, D. J., & Willner, A. E. (2008). Fiber-Based Slow-Light Technologies. Journal of Lightwave Technology, 26(23), 3752-3762. doi:10.1109/jlt.2008.2004883

Baba, T. (2008). Slow light in photonic crystals. Nature Photonics, 2(8), 465-473. doi:10.1038/nphoton.2008.146

Chang-Hasnain, C. J., & Chuang, S. L. (2006). Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices. Journal of Lightwave Technology, 24(12), 4642-4654. doi:10.1109/jlt.2006.885767

Agrawal, G. P. (1988). Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. Journal of the Optical Society of America B, 5(1), 147. doi:10.1364/josab.5.000147

Su, H., Kondratko, P., & Chuang, S. L. (2006). Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. Optics Express, 14(11), 4800. doi:10.1364/oe.14.004800

Xue, W., Chen, Y., Öhman, F., Sales, S., & Mørk, J. (2008). Enhancing light slow-down in semiconductor optical amplifiers by optical filtering. Optics Letters, 33(10), 1084. doi:10.1364/ol.33.001084

Xue, W., Sales, S., Capmany, J., & Mørk, J. (2010). Wideband 360° microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. Optics Express, 18(6), 6156. doi:10.1364/oe.18.006156

Xue, W., Chen, Y., Öhman, F., & Mørk, J. (2009). The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers. Optics Express, 17(3), 1404. doi:10.1364/oe.17.001404

Ó Dúill, S., Shumakher, E., & Eisenstein, G. (2010). The role of optical filtering in microwave phase shifting. Optics Letters, 35(13), 2278. doi:10.1364/ol.35.002278

Lloret, J., Ramos, F., Weiqi Xue, Sancho, J., Gasulla, I., Sales, S., … Capmany, J. (2011). The Influence of Optical Filtering on the Noise Performance of Microwave Photonic Phase Shifters Based on SOAs. Journal of Lightwave Technology, 29(12), 1746-1752. doi:10.1109/jlt.2011.2135839

[-]

This item appears in the following Collection(s)

Show full item record