- -

Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author De la Torre Alfaro, Olalla es_ES
dc.contributor.author Renz ., Michael es_ES
dc.date.accessioned 2013-07-15T12:24:43Z
dc.date.issued 2012
dc.identifier.issn 1754-5692
dc.identifier.uri http://hdl.handle.net/10251/31149
dc.description.abstract [EN] The Sylvan (2-methylfuran) diesel process involves the conversion of pentose biopolymers into premium diesel via furfural, by means of hydroxyalkylation/alkylation and hydrodeoxygenation reactions. In the hydroxyalkylation/alkylation step two Sylvan molecules are reacted with an aldehyde or a ketone to yield C-12+ oxygenated intermediate molecules. Thus, the manuscript describes first the performance of the hydroxyalkylation/alkylation step with different soluble and solid catalysts, and among solids delaminated zeolites were identified as promising catalysts. The scope of the process has also been studied by reacting Sylvan with different aldehyde and ketone molecules. It has been found that for the one-step trimerization of Sylvan, sulfuric acid appears the most adequate catalyst and can be reused. The final hydrodeoxygenation step is studied in detail starting with C-14 intermediates generated from two Sylvan and one butanal molecules as well as with the product generated by direct trimerization of Sylvan to yield the final corresponding mono-branched paraffinic diesel product. The Sylvan diesel process is an environmentally friendly process able to produce a high yield (87%) of a premium diesel with a cetane number of >70 and upper pour point of -75 degrees C from non-food biomass. es_ES
dc.description.sponsorship This work was supported by Consilider Ingenio 2009 CDS 00050. O.d.l.T. is grateful to the Spanish Ministry of Science and Innovation for a doctoral grant (FPU). We also thank E. Ponce and Dr D. Penno for discussions and technical assistance. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Energy and Environmental Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject NANOCRYSTALLINE ZEOLITE-BETA es_ES
dc.subject CONDENSATION es_ES
dc.subject BIOMASS es_ES
dc.subject CRYSTALLIZATION es_ES
dc.subject 2-METHYLFURAN es_ES
dc.subject CONVERSION es_ES
dc.subject FURANS es_ES
dc.subject BONDS es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1039/c2ee02778j
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Corma Canós, A.; De La Torre Alfaro, O.; Renz ., M. (2012). Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy and Environmental Sciences. 5(4):6328-6344. https://doi.org/10.1039/c2ee02778j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http:dx.doi.org/10.1039/c2ee02778j es_ES
dc.description.upvformatpinicio 6328 es_ES
dc.description.upvformatpfin 6344 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 236419
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Bicker, M., Hirth, J., & Vogel, H. (2003). Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chemistry, 5(2), 280-284. doi:10.1039/b211468b es_ES
dc.description.references Serrano-Ruiz, J. C., & Dumesic, J. A. (2011). Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ. Sci., 4(1), 83-99. doi:10.1039/c0ee00436g es_ES
dc.description.references Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508 es_ES
dc.description.references Willför, S., Sundberg, A., Pranovich, A., & Holmbom, B. (2005). Polysaccharides in some industrially important hardwood species. Wood Science and Technology, 39(8), 601-617. doi:10.1007/s00226-005-0039-4 es_ES
dc.description.references Zheng, H.-Y., Zhu, Y.-L., Teng, B.-T., Bai, Z.-Q., Zhang, C.-H., Xiang, H.-W., & Li, Y.-W. (2006). Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. Journal of Molecular Catalysis A: Chemical, 246(1-2), 18-23. doi:10.1016/j.molcata.2005.10.003 es_ES
dc.description.references Kumar, M., & Gayen, K. (2011). Developments in biobutanol production: New insights. Applied Energy, 88(6), 1999-2012. doi:10.1016/j.apenergy.2010.12.055 es_ES
dc.description.references Riad, A., Mouloungui, Z., Delmas, M., & Gaset, A. (1989). New Synthesis of Substituted Difuryl or Dithienyl Methanes. Synthetic Communications, 19(18), 3169-3173. doi:10.1080/00397918908052716 es_ES
dc.description.references Brown, W. H., & Sawatzky, H. (1956). THE CONDENSATION OF FURAN AND SYLVAN WITH SOME CARBONYL COMPOUNDS. Canadian Journal of Chemistry, 34(9), 1147-1153. doi:10.1139/v56-150 es_ES
dc.description.references Barthel, N., Finiels, A., Moreau, C., Jacquot, R., & Spagnol, M. (2001). Kinetic study and reaction mechanism of the hydroxyalkylation of aromatic compounds over H-BEA zeolites. Journal of Molecular Catalysis A: Chemical, 169(1-2), 163-169. doi:10.1016/s1381-1169(00)00552-5 es_ES
dc.description.references Haw, J. F. (2002). Zeolite acid strength and reaction mechanisms in catalysis. Phys. Chem. Chem. Phys., 4(22), 5431-5441. doi:10.1039/b206483a es_ES
dc.description.references Botella, P., Corma, A., Carr, R. H., & Mitchell, C. J. (2011). Towards an industrial synthesis of diamino diphenyl methane (DADPM) using novel delaminated materials: A breakthrough step in the production of isocyanates for polyurethanes. Applied Catalysis A: General, 398(1-2), 143-149. doi:10.1016/j.apcata.2011.03.026 es_ES
dc.description.references Corma, A., Diaz, U., Fornés, V., Guil, J. M., Martínez-Triguero, J., & Creyghton, E. J. (2000). Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. Journal of Catalysis, 191(1), 218-224. doi:10.1006/jcat.1999.2774 es_ES
dc.description.references Kunin, R., Meitzner, E. A., Oline, J. A., Fisher, S. A., & Frisch, N. (1962). Characterization of Amberlyst 15. Macroreticular Sulfonic Acid Cation Exchange Resin. Industrial & Engineering Chemistry Product Research and Development, 1(2), 140-144. doi:10.1021/i360002a016 es_ES
dc.description.references Tesser, R., Maradei, V., Di Serio, M., & Santacesaria, E. (2004). Kinetics of the Oxidative Dehydrogenation of Ethanol to Acetaldehyde on V2O5/TiO2−SiO2Catalysts Prepared by Grafting. Industrial & Engineering Chemistry Research, 43(7), 1623-1633. doi:10.1021/ie034182s es_ES
dc.description.references Oasmaa, A., Solantausta, Y., Arpiainen, V., Kuoppala, E., & Sipilä, K. (2010). Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues. Energy & Fuels, 24(2), 1380-1388. doi:10.1021/ef901107f es_ES
dc.description.references Nel, R. J. J., & de Klerk, A. (2009). Dehydration of C5−C12Linear 1-Alcohols over η-Alumina to Fuel Ethers. Industrial & Engineering Chemistry Research, 48(11), 5230-5238. doi:10.1021/ie801930r es_ES
dc.description.references Corma, A., de la Torre, O., & Renz, M. (2011). High-Quality Diesel from Hexose- and Pentose-Derived Biomass Platform Molecules. ChemSusChem, 4(11), 1574-1577. doi:10.1002/cssc.201100296 es_ES
dc.description.references Mascal, M., & Nikitin, E. B. (2008). Direct, High-Yield Conversion of Cellulose into Biofuel. Angewandte Chemie International Edition, 47(41), 7924-7926. doi:10.1002/anie.200801594 es_ES
dc.description.references HAMADA, K., YOSHIHARA, H., & SUZUKAMO, G. (2001). Novel Synthetic Route to 2,5-Disubstituted Furan Derivatives through Surface Active Agent-Catalysed Dehydration of D(-)-Fructose. Journal of Oleo Science, 50(6), 533-536. doi:10.5650/jos.50.533 es_ES
dc.description.references Mascal, M., & Nikitin, E. B. (2009). Towards the Efficient, Total Glycan Utilization of Biomass. ChemSusChem, 2(5), 423-426. doi:10.1002/cssc.200900071 es_ES
dc.description.references Yang, W., & Sen, A. (2011). Direct Catalytic Synthesis of 5-Methylfurfural from Biomass-Derived Carbohydrates. ChemSusChem, 4(3), 349-352. doi:10.1002/cssc.201000369 es_ES
dc.description.references Eftax, D. S. P., & Dunlop, A. P. (1965). Hydrolysis of Simple Furans.1Products of Secondary Condensation2. The Journal of Organic Chemistry, 30(4), 1317-1319. doi:10.1021/jo01015a552 es_ES
dc.description.references Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103 es_ES
dc.description.references Vannice, M. A. (1990). The use of metal-support interactions to selectively activate carbonyl bonds. Journal of Molecular Catalysis, 59(2), 165-177. doi:10.1016/0304-5102(90)85051-i es_ES
dc.description.references Camblor, M. A., Corma, A., & Valencia, S. (1998). Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta. Journal of Materials Chemistry, 8(9), 2137-2145. doi:10.1039/a804457k es_ES
dc.description.references Camblor, M. A., & Pérez-Pariente, J. (1991). Crystallization of zeolite beta: Effect of Na and K ions. Zeolites, 11(3), 202-210. doi:10.1016/s0144-2449(05)80220-9 es_ES
dc.description.references Camblor, M. A., Mifsud, A., & Pérez-Pariente, J. (1991). Influence of the synthesis conditions on the crystallization of zeolite Beta. Zeolites, 11(8), 792-797. doi:10.1016/s0144-2449(05)80057-0 es_ES
dc.description.references Camblor, M. A., Corma, A., Mifsud, A., Pérez-Pariente, J., & Valencia, S. (1997). Synthesis of nanocrystalline zeolite beta in the absence of alkali metal cations. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 341-348. doi:10.1016/s0167-2991(97)80574-5 es_ES
dc.description.references Camblor, M. A., Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25(1-3), 59-74. doi:10.1016/s1387-1811(98)00172-3 es_ES
dc.description.references Corma, A., Fornes, V., Navarro, M. T., & Perezpariente, J. (1994). Acidity and Stability of MCM-41 Crystalline Aluminosilicates. Journal of Catalysis, 148(2), 569-574. doi:10.1006/jcat.1994.1243 es_ES
dc.description.references Maruyama, O., Fujiwara, Y., & Taniguchi, H. (1981). The Reaction of 2-Methylfuran with Methyl Acrylate. Unusual Formation of 1,1′-Bis(5-methyl-2-furyl)ethane and Methyl 3,3′-Bis(5-methyl-2-furyl)propionate. Bulletin of the Chemical Society of Japan, 54(9), 2851-2852. doi:10.1246/bcsj.54.2851 es_ES
dc.description.references Hashmi, A. S. K., & Blanco, M. C. (2006). Gold Catalysis: Observation of a Two-Fold Intermolecular Hydroarylation of Unactivated C–C Triple Bonds. European Journal of Organic Chemistry, 2006(19), 4340-4342. doi:10.1002/ejoc.200600546 es_ES
dc.description.references Francke, W., & Reith, W. (1981). 2,9-dioxabicyclo[4.2.1]Nonan - darstellung, massenspektroskopie und umlagerung eines neuen heterocyclischen systems. Tetrahedron Letters, 22(21), 2029-2032. doi:10.1016/s0040-4039(01)92897-7 es_ES
dc.description.references Habib, S., Salamé, P., Launay, F., Semmer-Herledan, V., Marie, O., Zhao, W., … Gédéon, A. (2007). Investigation of the catalytic activity of extracted and smoothly calcined arenesulfonic modified SBA-15 materials. Journal of Molecular Catalysis A: Chemical, 271(1-2), 117-125. doi:10.1016/j.molcata.2007.02.022 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem