- -

Variable carrier reduction in radio-over-fiber systems for increased modulation efficiencyusing a Si3N4 tunable extinction ratio ring resonator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Variable carrier reduction in radio-over-fiber systems for increased modulation efficiencyusing a Si3N4 tunable extinction ratio ring resonator

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Perentos, A. es_ES
dc.contributor.author Cuesta, Francisco es_ES
dc.contributor.author Rodrigo, M. es_ES
dc.contributor.author Canciamilla, A. es_ES
dc.contributor.author Vidal Rodriguez, Borja es_ES
dc.contributor.author Pierno, L. es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Sánchez Losilla, Nuria es_ES
dc.contributor.author Bellieres, Laurent Christophe es_ES
dc.contributor.author López Royo, Francisco es_ES
dc.contributor.author Melloni, A. es_ES
dc.contributor.author Iezekiel, S es_ES
dc.date.accessioned 2013-07-17T09:14:23Z
dc.date.available 2013-07-17T09:14:23Z
dc.date.issued 2012
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/31182
dc.description This paper was published in OPTICS EXPRESS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.20.025478 e. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law es_ES
dc.description.abstract [EN] Variable optical carrier reduction via the use of a Si3N4 ring resonator notch filter with tunable extinction ratio is demonstrated in a 10 GHz radio-over-fiber system for improving the modulation efficiency. The extinction of the filter notch is tuned with micro-heaters, by setting the Mach-Zehnder coupler of the ring. Experimental results showing a modulation depth improvement of up to 20 dB are provided es_ES
dc.description.sponsorship This work was supported by the NANOCAP project A-1084-RT-GC that is coordinated by the European Defence Agency (EDA) and funded by 11 contributing Members (Cyprus, France, Germany, Greece, Hungary, Italy, Norway, Poland, Slovakia, Slovenia and Spain) in the framework of the Joint Investment Programme on Innovative Concepts and Emerging Technologies (JIP-ICET). en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carrier Reduction es_ES
dc.subject Radio over Fibre es_ES
dc.subject Silicon Nitride es_ES
dc.subject Ring resonators es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Variable carrier reduction in radio-over-fiber systems for increased modulation efficiencyusing a Si3N4 tunable extinction ratio ring resonator es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.20.025478
dc.relation.projectID info:eu-repo/grantAgreement/EDA//A-1084-RT-GC/EU/Novel NANOstructured optical Components for CBRN detection and high performance opto-microwave links/NANOCAP/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Perentos, A.; Cuesta, F.; Rodrigo, M.; Canciamilla, A.; Vidal Rodriguez, B.; Pierno, L.; Griol Barres, A.... (2012). Variable carrier reduction in radio-over-fiber systems for increased modulation efficiencyusing a Si3N4 tunable extinction ratio ring resonator. Optics Express. 20(23):25478-25488. doi:10.1364/OE.20.025478 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1364/OE.20.025478 es_ES
dc.description.upvformatpinicio 25478 es_ES
dc.description.upvformatpfin 25488 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 23 es_ES
dc.relation.senia 228963
dc.contributor.funder European Defense Agency
dc.description.references Lim, C., Nirmalathas, A., Bakaul, M., Gamage, P., Ka-Lun Lee, Yizhuo Yang, … Waterhouse, R. (2010). Fiber-Wireless Networks and Subsystem Technologies. Journal of Lightwave Technology, 28(4), 390-405. doi:10.1109/jlt.2009.2031423 es_ES
dc.description.references Capmany, J., & Novak, D. (2007). Microwave photonics combines two worlds. Nature Photonics, 1(6), 319-330. doi:10.1038/nphoton.2007.89 es_ES
dc.description.references Gomes, N. J., Morant, M., Alphones, A., Cabon, B., Mitchell, J. E., Lethien, C., … Iezekiel, S. (2009). Radio-over-fiber transport for the support of wireless broadband services [Invited]. Journal of Optical Networking, 8(2), 156. doi:10.1364/jon.8.000156 es_ES
dc.description.references Williams, K. J., & Esman, R. D. (1994). Stimulated Brillouin scattering for improvement of microwave fibre-optic link efficiency. Electronics Letters, 30(23), 1965-1966. doi:10.1049/el:19941344 es_ES
dc.description.references Tonda-Goldstein, S., Dolfi, D., Huignard, J.-P., Charlet, G., & Chazelas, J. (2000). Stimulated Brillouin scattering for microwave signal modulation depth increase in optical links. Electronics Letters, 36(11), 944. doi:10.1049/el:20000723 es_ES
dc.description.references Hraimel, B., Zhang, X., Pei, Y., Wu, K., Liu, T., Xu, T., & Nie, Q. (2011). Optical Single-Sideband Modulation With Tunable Optical Carrier to Sideband Ratio in Radio Over Fiber Systems. Journal of Lightwave Technology, 29(5), 775-781. doi:10.1109/jlt.2011.2108261 es_ES
dc.description.references LaGasse, M. J., Hamilton, M. C., Charczenko, W., & Thaniyavarn, S. (1994). Optical carrier filtering for high dynamic range fibre optic links. Electronics Letters, 30(25), 2157-2158. doi:10.1049/el:19941422 es_ES
dc.description.references Esman, R. D., & Williams, K. J. (1995). Wideband efficiency improvement of fiber optic systems by carrier subtraction. IEEE Photonics Technology Letters, 7(2), 218-220. doi:10.1109/68.345928 es_ES
dc.description.references Attygalle, M., Lim, C., Pendock, G. J., Nirmalathas, A., & Edvell, G. (2005). Transmission improvement in fiber wireless links using fiber Bragg gratings. IEEE Photonics Technology Letters, 17(1), 190-192. doi:10.1109/lpt.2004.836901 es_ES
dc.description.references Lim, C., Attygalle, M., Nirmalathas, A., Novak, D., & Waterhouse, R. (2006). Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links. IEEE Transactions on Microwave Theory and Techniques, 54(5), 2181-2187. doi:10.1109/tmtt.2006.872809 es_ES
dc.description.references Barwicz, T., Popovic, M. A., Watts, M. R., Rakich, P. T., Ippen, E. P., & Smith, H. I. (2006). Fabrication of add-drop filters based on frequency-matched microring resonators. Journal of Lightwave Technology, 24(5), 2207-2218. doi:10.1109/jlt.2006.872298 es_ES
dc.description.references Ferrari, C., Canciamilla, A., Morichetti, F., Sorel, M., & Melloni, A. (2011). Penalty-free transmission in a silicon coupled resonator optical waveguide over the full C-band. Optics Letters, 36(19), 3948. doi:10.1364/ol.36.003948 es_ES
dc.description.references Gasulla, I., Lloret, J., Sancho, J., Sales, S., & Capmany, J. (2011). Recent Breakthroughs in Microwave Photonics. IEEE Photonics Journal, 3(2), 311-315. doi:10.1109/jphot.2011.2130517 es_ES
dc.description.references Capmany, J., Gasulla, I., & Sales, S. (2011). Harnessing slow light. Nature Photonics, 5(12), 731-733. doi:10.1038/nphoton.2011.290 es_ES
dc.description.references Kopp, C., Bernabé, S., Bakir, B. B., Fedeli, J., Orobtchouk, R., Schrank, F., … Tekin, T. (2011). Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging. IEEE Journal of Selected Topics in Quantum Electronics, 17(3), 498-509. doi:10.1109/jstqe.2010.2071855 es_ES
dc.description.references Xu, D. W., Yoon, S. F., Tong, C. Z., Zhao, L. J., Ding, Y., & Fan, W. J. (2009). High-Temperature Continuous-Wave Single-Mode Operation of 1.3-$\mu$m p-Doped InAs–GaAs Quantum-Dot VCSELs. IEEE Photonics Technology Letters, 21(17), 1211-1213. doi:10.1109/lpt.2009.2024220 es_ES
dc.description.references Green, W. M. J., Lee, R. K., DeRose, G. A., Scherer, A., & Yariv, A. (2005). Hybrid InGaAsP-InP Mach-Zehnder Racetrack Resonator for Thermooptic Switching and Coupling Control. Optics Express, 13(5), 1651. doi:10.1364/opex.13.001651 es_ES
dc.description.references Li, C., Zhou, L., & Poon, A. W. (2007). Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Optics Express, 15(8), 5069. doi:10.1364/oe.15.005069 es_ES
dc.description.references Espinola, R. L., Tsai, M. C., Yardley, J. T., & Osgood, R. M. (2003). Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technology Letters, 15(10), 1366-1368. doi:10.1109/lpt.2003.818246 es_ES
dc.description.references Barwicz, T., Popovic, M. A., Rakich, P. T., Watts, M. R., Haus, H. A., Ippen, E. P., & Smith, H. I. (2004). Microring-resonator-based add-drop filters in SiN: fabrication and analysis. Optics Express, 12(7), 1437. doi:10.1364/opex.12.001437 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem