Pardo, R.; Herrero, H.; Hoyas, S. (2011). Theoretical study of a Bénard Marangoni problem. Journal of Mathematical Analysis and Applications. 376(1):231-246. https://doi.org/10.1016/j.jmaa.2010.10.064
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31404
Title:
|
Theoretical study of a Bénard Marangoni problem
|
Author:
|
Pardo, R.
Herrero, H.
Hoyas, S
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
|
Issued date:
|
|
Abstract:
|
[EN] In this paper we prove the existence of strong solutions for the stationary Benard-Marangoni problem in a finite domain flat on the top, bifurcating from the basic heat conductive state. The Benard-Marangoni problem ...[+]
[EN] In this paper we prove the existence of strong solutions for the stationary Benard-Marangoni problem in a finite domain flat on the top, bifurcating from the basic heat conductive state. The Benard-Marangoni problem is a physical phenomenon of thermal convection in which the effects of buoyancy and surface tension are taken into account. This problem is modelled with a system of partial differential equations of the type Navier-Stokes and heat equation. The boundary conditions include crossed boundary conditions involving tangential derivatives of the temperature and normal derivatives of the velocity field. To define tangential derivatives at the boundary, intended in the trace sense, it is necessary order two derivatives in the interior of the domain and thus the boundary term contains as high derivatives as the interior term. We overcome this difficulty by considering the weak formulation, and transforming the boundary integral into an equivalent integral defined in the whole domain. This allows us to reformulate the weak problem with a temperature having only order one weak derivatives. Concerning regularity results, we obtain strong solutions for the stationary Benard-Marangoni problem. (C) 2010 Elsevier Inc.
[-]
|
Subjects:
|
Fluid dynamics
,
Thermal convection
,
Bifurcation
,
Incompressible Boussinesq-Navier-Stokes equations
,
Benard-Marangoni problem
|
Copyrigths:
|
Cerrado |
Source:
|
Journal of Mathematical Analysis and Applications. (issn:
0022-247X
)
|
DOI:
|
10.1016/j.jmaa.2010.10.064
|
Publisher:
|
Elsevier
|
Publisher version:
|
http://dx.doi.org/10.1016/j.jmaa.2010.10.064
|
Project ID:
|
info:eu-repo/grantAgreement/MEC//MTM2006-14843-C02-01/ES/ESTUDIO NUMERICO Y TEORICO DE VARIOS PROBLEMAS DE ECUACIONES EN DERIVADAS PARCIALES DE DINAMICA DE FLUIDOS CON APLICACIONES EN GEOFISICA. CONSULTORIA MATEMATICA/
...[+]
info:eu-repo/grantAgreement/MEC//MTM2006-14843-C02-01/ES/ESTUDIO NUMERICO Y TEORICO DE VARIOS PROBLEMAS DE ECUACIONES EN DERIVADAS PARCIALES DE DINAMICA DE FLUIDOS CON APLICACIONES EN GEOFISICA. CONSULTORIA MATEMATICA/
info:eu-repo/grantAgreement/JCCM//PAC-05-005/
info:eu-repo/grantAgreement/MEC//MTM2006-08262/ES/DINAMICA NO LINEAL EN ECUACIONES EN DERIVADAS PARCIALES/
info:eu-repo/grantAgreement/CAM//GR74%2F07/
info:eu-repo/grantAgreement/Junta de Comunidades de Castilla-La Mancha//PAI08-0269-1261/ES/Matemáticas para varios problemas geofísicos, crecimiento tumoral y consultoría/
info:eu-repo/grantAgreement/CAM//Grupo 920894/
[-]
|
Thanks:
|
Henar Herrero was partially supported by the Research Grants MCYT (Spanish Government) MTM2006-14843-C02-01 and CCYT (Junta de Comunidades de Castilla-La Mancha) PAC-05-005 and PAI08-0269-1261, which include RDEF funds. ...[+]
Henar Herrero was partially supported by the Research Grants MCYT (Spanish Government) MTM2006-14843-C02-01 and CCYT (Junta de Comunidades de Castilla-La Mancha) PAC-05-005 and PAI08-0269-1261, which include RDEF funds. Rosa Pardo was partially supported by Research Grants MTM2006-08262 (Ministerio de Educacion y Ciencia, Spain) and GR74/07, Grupo 920894 (Comunidad de Madrid - UCM, Spain), and also by Programa Becas Complutense del Amo.
[-]
|
Type:
|
Artículo
|