- -

Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González Estrada, Octavio Andrés es_ES
dc.contributor.author Natarajan, S. es_ES
dc.contributor.author J.J. Ródenas es_ES
dc.contributor.author Nguyen-Xuan, H. es_ES
dc.contributor.author Bordas, S.P.A. es_ES
dc.date.accessioned 2013-07-26T09:13:19Z
dc.date.issued 2013-07
dc.identifier.issn 0178-7675
dc.identifier.uri http://hdl.handle.net/10251/31483
dc.description.abstract [EN] An error control technique aimed to assess the quality of smoothed finite element approximations is presented in this paper. Finite element techniques based on strain smoothing appeared in 2007 were shown to provide significant advantages compared to conventional finite element approximations. In particular, a widely cited strength of such methods is improved accuracy for the same computational cost. Yet, few attempts have been made to directly assess the quality of the results obtained during the simulation by evaluating an estimate of the discretization error. Here we propose a recovery type error estimator based on an enhanced recovery technique. The salient features of the recovery are: enforcement of local equilibrium and, for singular problems a ¿smooth + singular¿ decomposition of the recovered stress. We evaluate the proposed estimator on a number of test cases from linear elastic structural mechanics and obtain efficient error estimations whose effectivities, both at local and global levels, are improved compared to recovery procedures not implementing these features. es_ES
dc.description.sponsorship Stephane Bordas would like to thank the partial financial support of the Royal Academy of Engineering and of the Leverhulme Trust for his Senior Research Fellowship Towards the next generation surgical simulators as well as the financial support for Octavio A. Gonzalez-Estrada and Stephane Bordas from the UK Engineering Physical Science Research Council (EPSRC) under grant EP/G042705/1 Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method. Stephane Bordas also thanks partial financial support of the European Research Council Starting Independent Research Grant (ERC Stg grant agreement No. 279578) and the FP7 Initial Training Network Funding under grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology, INSIST". This work has been carried out within the framework of the research project DPI2010-20542 of the Ministerio de Ciencia e Innovacion (Spain). The financial support from Universitat Politecnica de Valencia, PROMETEO/2012/023 and Generalitat Valenciana are also acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Computational Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Smoothed finite element method es_ES
dc.subject Error estimation es_ES
dc.subject Statical admissibility es_ES
dc.subject SPR-CX es_ES
dc.subject Singularity es_ES
dc.subject Recovery es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s00466-012-0795-6
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20542/ES/DESARROLLO DE HERRAMIENTA 3D COMPUTACIONALMENTE EFICAZ Y DE ALTA PRECISION PARA ANALISIS Y DISEÑO ESTRUCTURAL BASADA EN MALLADOS CARTESIANOS DE EF INDEPENDIENTES DE GEOMETRIA/
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/279578/EU/Towards real time multiscale simulation of cutting in non-linear materials with applications to surgical simulation and computer guided surgery/
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FG042705%2F1/GB/Increased Reliability for Industrially Relevant Automatic Crack Growth Simulation with the eXtended Finite Element Method/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCUK/EPSRC/EP/G042705/1/GB/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation González Estrada, OA.; Natarajan, S.; J.J. Ródenas; Nguyen-Xuan, H.; Bordas, S. (2013). Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity. Computational Mechanics. 52(1):37-52. https://doi.org/10.1007/s00466-012-0795-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00466-012-0795-6 es_ES
dc.description.upvformatpinicio 37 es_ES
dc.description.upvformatpfin 52 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 237742
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder European Research Council
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder European Commission
dc.description.references Liu GR, Dai KY, Nguyen TT (2006) A smoothed finite element method for mechanics problems. Comput Mech 39(6): 859–877. doi: 10.1007/s00466-006-0075-4 es_ES
dc.description.references Liu GR, Nguyen TT, Dai KY, Lam KY (2007) Theoretical aspects of the smoothed finite element method (SFEM). Int J Numer Methods Eng 71(8): 902–930 es_ES
dc.description.references Nguyen-Xuan H, Bordas SPA, Nguyen-Dang H (2008) Smooth finite element methods: convergence, accuracy and properties. Int J Numer Methods Eng 74(2): 175–208. doi: 10.1002/nme es_ES
dc.description.references Bordas SPA, Natarajan S (2010) On the approximation in the smoothed finite element method (SFEM). Int J Numer Methods Eng 81(5): 660–670. doi: 10.1002/nme es_ES
dc.description.references Zhang HH, Liu SJ, Li LX (2008) On the smoothed finite element method. Int J Numer Methods Eng 76(8): 1285–1295. doi: 10.1002/nme.2460 es_ES
dc.description.references Nguyen-Thoi T, Liu G, Lam K, Zhang G. (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics using 4-node tetrahedral elements. Int J Numer Methods Eng 78: 324–353 es_ES
dc.description.references Liu G, Nguyen-Thoi T, Lam K (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320: 1100–1130 es_ES
dc.description.references Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Lam K (2009) A node based smoothed finite element method (NS-FEM) for upper bound solution to solid mechanics problems. Comput Struct 87: 14–26 es_ES
dc.description.references Liu G. Smoothed Finite Element Methods. CRC Press, 2010 es_ES
dc.description.references Liu G, Nguyen-Xuan H, Nguyen-Thoi T (2010) A theoretical study on the smoothed FEM (SFEM) models: Properties, accuracy and convergence rates. Int J Numer Methods Biomed Eng 84: 1222–1256 es_ES
dc.description.references Nguyen T, Liu G, Dai K, Lam K (2007) smoothed finite element method. Tsinghua Sci Technol 12: 497–508 es_ES
dc.description.references Hung NX, Bordas S, Hung N (2009) Addressing volumetric locking and instabilities by selective integration in smoothed finite element. Commun Numer Methods Eng 25: 19–34 es_ES
dc.description.references Nguyen-Xuan H, Rabczuk T, Bordas S, Debongnie JF (2008) A smoothed finite element method for plate analysis. Comput Methods Appl Mech Eng 197: 1184–1203 es_ES
dc.description.references Nguyen NT, Rabczuk T, Nguyen-Xuan H, Bordas S (2008) A smoothed finite element method for shell analysis. Comput Methods Appl Mech Eng 198: 165–177 es_ES
dc.description.references Bordas SPA, Rabczuk T, Hung NX, Nguyen VP, Natarajan S, Bog T, óuan DM, Hiep NV (2010) Strain smoothing in FEM and XFEM. Comput Struct 88(23–24): 1419–1443. doi: 10.1016/j.compstruc.2008.07.006 es_ES
dc.description.references Bordas SP, Natarajan S, Kerfriden P, Augarde CE, Mahapatra DR, Rabczuk T, Pont SD (2011) On the performance of strain smoothing for óuadratic and enriched finite element approximations (XFEM/GFEM/PUFEM). Int J Numer Methods Biomed Eng 86: 637–666 es_ES
dc.description.references Liu G, Nguyen-Thoi T, Nguyen-Xuan H, Dai K, Lam K (2009) On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM). Int J Numer Methods Eng 77: 1863–1869. doi: 10.1002/nme.2587 es_ES
dc.description.references Strouboulis T, Zhang L, Wang D, Babuška I. (2006) A posteriori error estimation for generalized finite element methods. Comput Methods Appl Mech Eng 195(9–12): 852–879 es_ES
dc.description.references Bordas SPA, Duflot M (2007) Derivative recovery and a posteriori error estimate for extended finite elements. Comput Methods Appl Mech Eng 196(35–36): 3381–3399 es_ES
dc.description.references Xiao óZ, Karihaloo BL (2004) Statically admissible stress recovery using the moving least sóuares technique. In: Topping BHV, Soares CAM (eds) Progress in computational structures technology. Saxe-Coburg Publications, Stirling, pp 111–138 es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular + smooth stress field splitting. Int J Numer Methods Eng 76(4): 545–571. doi: 10.1002/nme.2313 es_ES
dc.description.references Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int J Numer Methods Eng 81(6): 671–700 es_ES
dc.description.references Barros FB, Proenca SPB, de Barcellos CS (2004) On error estimator and p-adaptivity in the generalized finite element method. Int J Numer Methods Eng 60(14):2373–2398. doi: 10.1002/nme.1048 es_ES
dc.description.references Nguyen-Thoi T, Liu G, Nguyen-Xuan H, Nguyen-Tran C (2011) Adaptive analysis using the node-based smoothed finite element method (NS-FEM). Int J Numer Methods Biomed Eng 27(2): 198–218. doi: 10.1002/cnm es_ES
dc.description.references González-Estrada OA, Ródenas JJ, Bordas SPA, Duflot M, Kerfriden P, Giner E (2012) On the role of enrichment and statical admissibility of recovered fields in a-posteriori error estimation for enriched finite element methods. Eng Comput 29(8) es_ES
dc.description.references Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2): 337–357 es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40): 2607–2621 es_ES
dc.description.references Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plate in extension. J Appl Mech 19: 526–534 es_ES
dc.description.references Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New York es_ES
dc.description.references Barber JR. (2010) Elasticity. Series: solid mechanics and its application, 3rd edn. Springer, Dordrecht es_ES
dc.description.references Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerki mesh-free methods. Int J Numer Methods Eng 50: 435–466 es_ES
dc.description.references Yoo J, Moran B, Chen J (2004) Stabilized conforming nodal integration in the natural element method. Int J Numer Methods Eng 60: 861–890 es_ES
dc.description.references Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7): 1331–1364 es_ES
dc.description.references Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7): 1365–1382 es_ES
dc.description.references Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and eóuilibrium. Int J Numer Methods Eng 36(16): 2703–2724. doi: 10.1002/nme.1620361603 es_ES
dc.description.references Blacker T, Belytschko T (1994) Superconvergent patch recovery with eóuilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3): 517–536 es_ES
dc.description.references Stein E, Ramm E, Rannacher R (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, Chichester es_ES
dc.description.references Duflot M, Bordas SPA (2008) A posteriori error estimation for extended finite elements by an extended global recovery. Int J Numer Methods Eng 76: 1123–1138. doi: 10.1002/nme es_ES
dc.description.references Bordas SPA, Duflot M, Le P (2008) A simple error estimator for extended finite elements. Commun Numer Methods Eng 24(11): 961–971 es_ES
dc.description.references Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint eóuations: the SPR-C technique. Int J Numer Methods Eng 70(6): 705–727. doi: 10.1002/nme.1903 es_ES
dc.description.references Díez P, Ródenas JJ, Zienkiewicz OC (2007) Eóuilibrated patch recovery error estimates: simple and accurate upper bounds of the error. Int J Numer Methods Eng 69(10): 2075–2098. doi: 10.1002/nme es_ES
dc.description.references Yau J, Wang S, Corten H (1980) A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. J Appl Mech 47(2): 335–341 es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Fuenmayor FJ, Chinesta F (2010) Upper bounds of the error in X-FEM based on a moving least sóuares (MLS) recovery technique. In: Khalili N, Valliappan S, Li ó, Russell A (eds) 9th World congress on computational mechanics (WCCM9). 4th Asian Pacific Congress on computational methods (APCOM2010). Centre for Infrastructure Engineering and Safety es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2007) Upper bounds of the error in the extended finite element method by using an eóuilibrated-stress patch recovery technique. In: International conference on adaptive modeling and simulation (ADMOS 2007). International Center for Numerical Methods in Engineering (CIMNE), pp 210–213 es_ES
dc.description.references Menk A, Bordas S (2010) Numerically determined enrichment function for the extended finite element method and applications to bi-material anisotropic fracture and polycrystals. Int J Numer Methods Eng 83: 805–828 es_ES
dc.description.references Menk A, Bordas S (2011) Crack growth calculations in solder joints based on microstructural phenomena with X-FEM. Comput Mater Sci 3: 1145–1156 es_ES
dc.description.references Ródenas JJ (2001) Error de discretización en el cálculo de sensibilidades mediante el método de los elementos finitos. PhD Thesis, Universidad Politécnica de Valencia es_ES
dc.description.references Ainsworth M, Oden JT (2000) A posteriori error estimation in finite element analysis. Wiley, Chichester es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem