- -

Information processing with a single multifunctional nanofluidic diode

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Information processing with a single multifunctional nanofluidic diode

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ramirez Hoyos, Patricio es_ES
dc.contributor.author Ali, Mubarak es_ES
dc.contributor.author Ensinger, Wolfgang es_ES
dc.contributor.author Mafe, Salvador es_ES
dc.date.accessioned 2013-09-03T06:27:03Z
dc.date.issued 2012
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10251/31698
dc.description.abstract [EN] We show that a multifunctional nanofluidic diode, based on a single pH-sensitive polymeric pore, can be used for different information processing tasks. This fact should permit a significant simplification of the logic circuitry in physico-chemical processors. The inputs are the pH values in the external solutions and the applied potential difference (voltage). The output is the electrical pore conductance. As a proof of concept, different logic and arithmetic computational functions are demonstrated. (C) 2012 American Institute of Physics. es_ES
dc.description.sponsorship This paper is dedicated to Enrique M. G. B. The authors acknowledge Miguel Ferrandez for assistance in the preparation of the artwork. P. R. and S. M. acknowledge the financial support from the Generalitat Valenciana (project PROME-TEO/GV/0069), the Ministry of Science and Innovation of Spain (projects Nos. MAT2009-07747 and MAT2012-32084) and FEDER. M. A. and W. E. gratefully acknowledge financial support by the Beilstein-Institut, Frankfurt/Main, Germany, within the research collaboration NanoBiC. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Applied Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CURRENT RECTIFICATION es_ES
dc.subject ION CHANNELS es_ES
dc.subject LOGIC GATES es_ES
dc.subject NANOPORES es_ES
dc.subject PH es_ES
dc.subject TRANSPORT es_ES
dc.subject MEMBRANES es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Information processing with a single multifunctional nanofluidic diode es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1063/1.4754845
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-07747/ES/Fenomenos De Transporte En Nanoporos Sinteticos Con Nuevas Propiedades Funcionales: Diseño De Nuevos Procesos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F0069 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2012-32084/ES/FUNDAMENTOS DE LA TECNOLOGIA DE NANOPOROS FUNCIONALIZADOS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ramirez Hoyos, P.; Ali, M.; Ensinger, W.; Mafe, S. (2012). Information processing with a single multifunctional nanofluidic diode. Applied Physics Letters. 101:1331081-1331084. https://doi.org/10.1063/1.4754845 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.4754845 es_ES
dc.description.upvformatpinicio 1331081 es_ES
dc.description.upvformatpfin 1331084 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101 es_ES
dc.relation.senia 228745
dc.identifier.eissn 1077-3118
dc.contributor.funder Beilstein-Institut es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Verdiá-Báguena, C., Queralt-Martín, M., Aguilella, V. M., & Alcaraz, A. (2012). Protein Ion Channels as Molecular Ratchets. Switchable Current Modulation in Outer Membrane Protein F Porin Induced by Millimolar La3+ Ions. The Journal of Physical Chemistry C, 116(11), 6537-6542. doi:10.1021/jp210790r es_ES
dc.description.references Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875 es_ES
dc.description.references Harrell, C. C., Siwy, Z. S., & Martin, C. R. (2006). Conical Nanopore Membranes: Controlling the Nanopore Shape. Small, 2(2), 194-198. doi:10.1002/smll.200500196 es_ES
dc.description.references Hlushkou, D., Perry, J. M., Jacobson, S. C., & Tallarek, U. (2011). Propagating Concentration Polarization and Ionic Current Rectification in a Nanochannel–Nanofunnel Device. Analytical Chemistry, 84(1), 267-274. doi:10.1021/ac202501v es_ES
dc.description.references Fan, R., Yue, M., Karnik, R., Majumdar, A., & Yang, P. (2005). Polarity Switching and Transient Responses in Single Nanotube Nanofluidic Transistors. Physical Review Letters, 95(8). doi:10.1103/physrevlett.95.086607 es_ES
dc.description.references Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056 es_ES
dc.description.references Ku, J.-R., Lai, S.-M., Ileri, N., Ramírez, P., Mafé, S., & Stroeve, P. (2007). pH and Ionic Strength Effects on Amino Acid Transport through Au-Nanotubule Membranes Charged with Self-Assembled Monolayers. The Journal of Physical Chemistry C, 111(7), 2965-2973. doi:10.1021/jp066944d es_ES
dc.description.references Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146 es_ES
dc.description.references Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119 es_ES
dc.description.references Gabrielsson, E. O., Tybrandt, K., & Berggren, M. (2012). Ion diode logics for pH control. Lab on a Chip, 12(14), 2507. doi:10.1039/c2lc40093f es_ES
dc.description.references Senapati, S., Basuray, S., Slouka, Z., Cheng, L.-J., & Chang, H.-C. (2011). A Nanomembrane-Based Nucleic Acid Sensing Platform for Portable Diagnostics. Topics in Current Chemistry, 153-169. doi:10.1007/128_2011_142 es_ES
dc.description.references Lemay, S. G. (2009). Nanopore-Based Biosensors: The Interface between Ionics and Electronics. ACS Nano, 3(4), 775-779. doi:10.1021/nn900336j es_ES
dc.description.references Andréasson, J., Pischel, U., Straight, S. D., Moore, T. A., Moore, A. L., & Gust, D. (2011). All-Photonic Multifunctional Molecular Logic Device. Journal of the American Chemical Society, 133(30), 11641-11648. doi:10.1021/ja203456h es_ES
dc.description.references Ali, M., Mafe, S., Ramirez, P., Neumann, R., & Ensinger, W. (2009). Logic Gates Using Nanofluidic Diodes Based on Conical Nanopores Functionalized with Polyprotic Acid Chains. Langmuir, 25(20), 11993-11997. doi:10.1021/la902792f es_ES
dc.description.references Mafe, S., Manzanares, J. A., & Ramirez, P. (2010). Gating of Nanopores: Modeling and Implementation of Logic Gates. The Journal of Physical Chemistry C, 114(49), 21287-21290. doi:10.1021/jp1087114 es_ES
dc.description.references Cervera, J., Ramírez, P., Manzanares, J. A., & Mafé, S. (2009). Incorporating ionic size in the transport equations for charged nanopores. Microfluidics and Nanofluidics, 9(1), 41-53. doi:10.1007/s10404-009-0518-2 es_ES
dc.description.references Margulies, D., Melman, G., & Shanzer, A. (2005). Fluorescein as a model molecular calculator with reset capability. Nature Materials, 4(10), 768-771. doi:10.1038/nmat1469 es_ES
dc.description.references Momotenko, D., & Girault, H. H. (2011). Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. Journal of the American Chemical Society, 133(37), 14496-14499. doi:10.1021/ja2048368 es_ES
dc.description.references Casey, J. R., Grinstein, S., & Orlowski, J. (2009). Sensors and regulators of intracellular pH. Nature Reviews Molecular Cell Biology, 11(1), 50-61. doi:10.1038/nrm2820 es_ES
dc.description.references Schreiber, S., Konradt, M., Groll, C., Scheid, P., Hanauer, G., Werling, H.-O., … Suerbaum, S. (2004). The spatial orientation of Helicobacter pylori in the gastric mucus. Proceedings of the National Academy of Sciences, 101(14), 5024-5029. doi:10.1073/pnas.0308386101 es_ES
dc.description.references Raghunand, N., & Gillies, R. J. (2000). pH and drug resistance in tumors. Drug Resistance Updates, 3(1), 39-47. doi:10.1054/drup.2000.0119 es_ES
dc.description.references Jeon, G., Yang, S. Y., Byun, J., & Kim, J. K. (2011). Electrically Actuatable Smart Nanoporous Membrane for Pulsatile Drug Release. Nano Letters, 11(3), 1284-1288. doi:10.1021/nl104329y es_ES
dc.description.references Hu, N., Ai, Y., & Qian, S. (2012). Field effect control of electrokinetic transport in micro/nanofluidics. Sensors and Actuators B: Chemical, 161(1), 1150-1167. doi:10.1016/j.snb.2011.12.004 es_ES
dc.description.references Majd, S., Yusko, E. C., Billeh, Y. N., Macrae, M. X., Yang, J., & Mayer, M. (2010). Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Current Opinion in Biotechnology, 21(4), 439-476. doi:10.1016/j.copbio.2010.05.002 es_ES
dc.description.references Cervera, J., & Mafé, S. (2010). Multivalued and Reversible Logic Gates Implemented with Metallic Nanoparticles and Organic Ligands. ChemPhysChem, 11(8), 1654-1658. doi:10.1002/cphc.200900973 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem