- -

Root transcriptional responses of two melongenotypes with contrasting resistance toMonosporascus cannonballus (Pollack et Uecker)infection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Root transcriptional responses of two melongenotypes with contrasting resistance toMonosporascus cannonballus (Pollack et Uecker)infection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Roig Montaner, Mª Cristina es_ES
dc.contributor.author Fita, Ana es_ES
dc.contributor.author Rios, Gabino es_ES
dc.contributor.author Hammond, John P. es_ES
dc.contributor.author Nuez Viñals, Fernando es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.date.accessioned 2013-09-03T13:33:59Z
dc.date.available 2013-09-03T13:33:59Z
dc.date.issued 2012
dc.identifier.issn 1471-2164
dc.identifier.uri http://hdl.handle.net/10251/31713
dc.description.abstract Background: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M. cannonballus and melon roots in either susceptible or resistant genotypes is lacking. In the present study, we used a melon oligo-based microarray to investigate the gene expression responses of two melon genotypes, Cucumis melo ¿Piel de sapo¿ (¿PS¿) and C. melo ¿Pat 81¿, with contrasting resistance to the disease. This study was carried out at 1 and 3 days after infection (DPI) by M. cannonballus. Results: Our results indicate a dissimilar behavior of the susceptible vs. the resistant genotypes from 1 to 3 DPI. ¿PS¿ responded with a more rapid infection response than ¿Pat 81¿ at 1 DPI. At 3 DPI the total number of differentially expressed genes identified in ¿PS¿ declined from 451 to 359, while the total number of differentially expressed transcripts in ¿Pat 81¿ increased from 187 to 849. Several deregulated transcripts coded for components of Ca2+ and jasmonic acid (JA) signalling pathways, as well as for other proteins related to defence mechanisms. Transcriptional differences in the activation of the JA-mediated response in ¿Pat 81¿ compared to ¿PS¿ suggested that JA response might be partially responsible for their observed differences in resistance. Conclusions: As a result of this study we have identified for the first time a set of candidate genes involved in the root response to the infection of the pathogen causing melon vine decline. This information is useful for understanding the disease progression and resistance mechanisms few days after inoculation. es_ES
dc.language Inglés es_ES
dc.publisher BioMed Central es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification GENETICA es_ES
dc.title Root transcriptional responses of two melongenotypes with contrasting resistance toMonosporascus cannonballus (Pollack et Uecker)infection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/1471-2164-13-601
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Roig Montaner, MC.; Fita, A.; Rios, G.; Hammond, JP.; Nuez Viñals, F.; Picó Sirvent, MB. (2012). Root transcriptional responses of two melongenotypes with contrasting resistance toMonosporascus cannonballus (Pollack et Uecker)infection. BMC Genomics. 13(601):1-12. doi:10.1186/1471-2164-13-601 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1186/1471-2164-13-601 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 601 es_ES
dc.relation.senia 234253
dc.identifier.pmid 23134692 en_EN
dc.identifier.pmcid PMC3542287 en_EN
dc.description.references Stanghellini, M. E., Kim, D. H., & Waugh, M. (2000). Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus. Phytopathology, 90(3), 243-247. doi:10.1094/phyto.2000.90.3.243 es_ES
dc.description.references Waugh, M. M., Ferrin, D. M., & Stanghellini, M. E. (2005). Colonization of cantaloupe roots by Monosporascus cannonballus. Mycological Research, 109(11), 1297-1301. doi:10.1017/s0953756205003722 es_ES
dc.description.references Périn, C., Hagen, L., De Conto, V., Katzir, N., Danin-Poleg, Y., Portnoy, V., … Pitrat, M. (2002). A reference map of Cucumis melo based on two recombinant inbred line populations. Theoretical and Applied Genetics, 104(6), 1017-1034. doi:10.1007/s00122-002-0864-x es_ES
dc.description.references Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y es_ES
dc.description.references Gonzalo, M. J., Oliver, M., Garcia-Mas, J., Monfort, A., Dolcet-Sanjuan, R., Katzir, N., … Monforte, A. J. (2005). Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theoretical and Applied Genetics, 110(5), 802-811. doi:10.1007/s00122-004-1814-6 es_ES
dc.description.references Fernandez-Silva, I., Eduardo, I., Blanca, J., Esteras, C., Picó, B., Nuez, F., … Monforte, A. J. (2008). Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theoretical and Applied Genetics, 118(1), 139-150. doi:10.1007/s00122-008-0883-3 es_ES
dc.description.references Deleu, W., Esteras, C., Roig, C., González-To, M., Fernández-Silva, I., Gonzalez-Ibeas, D., … Garcia-Mas, J. (2009). A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology, 9(1), 90. doi:10.1186/1471-2229-9-90 es_ES
dc.description.references Harel-Beja, R., Tzuri, G., Portnoy, V., Lotan-Pompan, M., Lev, S., Cohen, S., … Katzir, N. (2010). A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics, 121(3), 511-533. doi:10.1007/s00122-010-1327-4 es_ES
dc.description.references González, V. M., Garcia-Mas, J., Arús, P., & Puigdomènech, P. (2010). Generation of a BAC-based physical map of the melon genome. BMC Genomics, 11(1), 339. doi:10.1186/1471-2164-11-339 es_ES
dc.description.references Nieto, C., Piron, F., Dalmais, M., Marco, C. F., Moriones, E., Gómez-Guillamón, M. L., … Bendahmane, A. (2007). EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biology, 7(1), 34. doi:10.1186/1471-2229-7-34 es_ES
dc.description.references Dahmani-Mardas, F., Troadec, C., Boualem, A., Lévêque, S., Alsadon, A. A., Aldoss, A. A., … Bendahmane, A. (2010). Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 5(12), e15776. doi:10.1371/journal.pone.0015776 es_ES
dc.description.references González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289 es_ES
dc.description.references Gonzalez-Ibeas, D., Blanca, J., Roig, C., González-To, M., Picó, B., Truniger, V., … Aranda, M. A. (2007). MELOGEN: an EST database for melon functional genomics. BMC Genomics, 8(1), 306. doi:10.1186/1471-2164-8-306 es_ES
dc.description.references Clepet, C., Joobeur, T., Zheng, Y., Jublot, D., Huang, M., Truniger, V., … Fei, Z. (2011). Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-252 es_ES
dc.description.references Mascarell-Creus, A., Cañizares, J., Vilarrasa-Blasi, J., Mora-García, S., Blanca, J., Gonzalez-Ibeas, D., … Caño-Delgado, A. I. (2009). An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics, 10(1), 467. doi:10.1186/1471-2164-10-467 es_ES
dc.description.references Reddy, V. S. (2003). Plant Molecular Biology, 52(1), 143-159. doi:10.1023/a:1023993713849 es_ES
dc.description.references Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. The Plant Cell, 23(6), 2010-2032. doi:10.1105/tpc.111.084988 es_ES
dc.description.references Tena, G., Boudsocq, M., & Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology, 14(5), 519-529. doi:10.1016/j.pbi.2011.05.006 es_ES
dc.description.references Eulgem, T., & Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10(4), 366-371. doi:10.1016/j.pbi.2007.04.020 es_ES
dc.description.references Li, J., Brader, G., Kariola, T., & Tapio Palva, E. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 46(3), 477-491. doi:10.1111/j.1365-313x.2006.02712.x es_ES
dc.description.references Li, J., Brader, G., & Palva, E. T. (2004). The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell, 16(2), 319-331. doi:10.1105/tpc.016980 es_ES
dc.description.references Pauwels, L., & Goossens, A. (2011). The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. The Plant Cell, 23(9), 3089-3100. doi:10.1105/tpc.111.089300 es_ES
dc.description.references Liu, F., Jiang, H., Ye, S., Chen, W.-P., Liang, W., Xu, Y., … Li, C. (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Research, 20(5), 539-552. doi:10.1038/cr.2010.36 es_ES
dc.description.references Sestili, S., Polverari, A., Luongo, L., Ferrarini, A., Scotton, M., Hussain, J., … Belisario, A. (2011). Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-122 es_ES
dc.description.references Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.-L., … Schulze-Lefert, P. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425(6961), 973-977. doi:10.1038/nature02076 es_ES
dc.description.references Schulze-Lefert, P. (2004). Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Current Opinion in Plant Biology, 7(4), 377-383. doi:10.1016/j.pbi.2004.05.004 es_ES
dc.description.references Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., … Schulze-Lefert, P. (1997). The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell, 88(5), 695-705. doi:10.1016/s0092-8674(00)81912-1 es_ES
dc.description.references Consonni, C., Humphry, M. E., Hartmann, H. A., Livaja, M., Durner, J., Westphal, L., … Panstruga, R. (2006). Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38(6), 716-720. doi:10.1038/ng1806 es_ES
dc.description.references HUMPHRY, M., REINSTÄDLER, A., IVANOV, S., BISSELING, T., & PANSTRUGA, R. (2011). Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Molecular Plant Pathology, 12(9), 866-878. doi:10.1111/j.1364-3703.2011.00718.x es_ES
dc.description.references Humphry, M., Bednarek, P., Kemmerling, B., Koh, S., Stein, M., Gobel, U., … Panstruga, R. (2010). A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proceedings of the National Academy of Sciences, 107(50), 21896-21901. doi:10.1073/pnas.1003619107 es_ES
dc.description.references Chen, Z., Noir, S., Kwaaitaal, M., Hartmann, H. A., Wu, M.-J., Mudgil, Y., … Jones, A. M. (2009). Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in Arabidopsis Root Thigmomorphogenesis. The Plant Cell, 21(7), 1972-1991. doi:10.1105/tpc.108.062653 es_ES
dc.description.references Cheng, H., Kun, W., Liu, D., Su, Y., & He, Q. (2011). Molecular cloning and expression analysis of CmMlo1 in melon. Molecular Biology Reports, 39(2), 1903-1907. doi:10.1007/s11033-011-0936-6 es_ES
dc.description.references Guo, Y.-H., Yu, Y.-P., Wang, D., Wu, C.-A., Yang, G.-D., Huang, J.-G., & Zheng, C.-C. (2009). GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 183(1), 62-75. doi:10.1111/j.1469-8137.2009.02838.x es_ES
dc.description.references Schlink, K. (2009). Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Functional & Integrative Genomics, 10(2), 253-264. doi:10.1007/s10142-009-0143-x es_ES
dc.description.references Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109 es_ES
dc.description.references Bolstad, B. M., Irizarry, R. ., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193. doi:10.1093/bioinformatics/19.2.185 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem