Mostrar el registro sencillo del ítem
dc.contributor.author | Roig Montaner, Mª Cristina | es_ES |
dc.contributor.author | Fita, Ana | es_ES |
dc.contributor.author | Rios, Gabino | es_ES |
dc.contributor.author | Hammond, John P. | es_ES |
dc.contributor.author | Nuez Viñals, Fernando | es_ES |
dc.contributor.author | Picó Sirvent, María Belén | es_ES |
dc.date.accessioned | 2013-09-03T13:33:59Z | |
dc.date.available | 2013-09-03T13:33:59Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1471-2164 | |
dc.identifier.uri | http://hdl.handle.net/10251/31713 | |
dc.description.abstract | Background: Monosporascus cannonballus is the main causal agent of melon vine decline disease. Several studies have been carried out mainly focused on the study of the penetration of this pathogen into melon roots, the evaluation of symptoms severity on infected roots, and screening assays for breeding programs. However, a detailed molecular view on the early interaction between M. cannonballus and melon roots in either susceptible or resistant genotypes is lacking. In the present study, we used a melon oligo-based microarray to investigate the gene expression responses of two melon genotypes, Cucumis melo ¿Piel de sapo¿ (¿PS¿) and C. melo ¿Pat 81¿, with contrasting resistance to the disease. This study was carried out at 1 and 3 days after infection (DPI) by M. cannonballus. Results: Our results indicate a dissimilar behavior of the susceptible vs. the resistant genotypes from 1 to 3 DPI. ¿PS¿ responded with a more rapid infection response than ¿Pat 81¿ at 1 DPI. At 3 DPI the total number of differentially expressed genes identified in ¿PS¿ declined from 451 to 359, while the total number of differentially expressed transcripts in ¿Pat 81¿ increased from 187 to 849. Several deregulated transcripts coded for components of Ca2+ and jasmonic acid (JA) signalling pathways, as well as for other proteins related to defence mechanisms. Transcriptional differences in the activation of the JA-mediated response in ¿Pat 81¿ compared to ¿PS¿ suggested that JA response might be partially responsible for their observed differences in resistance. Conclusions: As a result of this study we have identified for the first time a set of candidate genes involved in the root response to the infection of the pathogen causing melon vine decline. This information is useful for understanding the disease progression and resistance mechanisms few days after inoculation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | BioMed Central | es_ES |
dc.relation.ispartof | BMC Genomics | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Root transcriptional responses of two melongenotypes with contrasting resistance toMonosporascus cannonballus (Pollack et Uecker)infection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1186/1471-2164-13-601 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Roig Montaner, MC.; Fita, A.; Rios, G.; Hammond, JP.; Nuez Viñals, F.; Picó Sirvent, MB. (2012). Root transcriptional responses of two melongenotypes with contrasting resistance toMonosporascus cannonballus (Pollack et Uecker)infection. BMC Genomics. 13(601):1-12. doi:10.1186/1471-2164-13-601 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1186/1471-2164-13-601 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 601 | es_ES |
dc.relation.senia | 234253 | |
dc.identifier.pmid | 23134692 | en_EN |
dc.identifier.pmcid | PMC3542287 | en_EN |
dc.description.references | Stanghellini, M. E., Kim, D. H., & Waugh, M. (2000). Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus. Phytopathology, 90(3), 243-247. doi:10.1094/phyto.2000.90.3.243 | es_ES |
dc.description.references | Waugh, M. M., Ferrin, D. M., & Stanghellini, M. E. (2005). Colonization of cantaloupe roots by Monosporascus cannonballus. Mycological Research, 109(11), 1297-1301. doi:10.1017/s0953756205003722 | es_ES |
dc.description.references | Périn, C., Hagen, L., De Conto, V., Katzir, N., Danin-Poleg, Y., Portnoy, V., … Pitrat, M. (2002). A reference map of Cucumis melo based on two recombinant inbred line populations. Theoretical and Applied Genetics, 104(6), 1017-1034. doi:10.1007/s00122-002-0864-x | es_ES |
dc.description.references | Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y | es_ES |
dc.description.references | Gonzalo, M. J., Oliver, M., Garcia-Mas, J., Monfort, A., Dolcet-Sanjuan, R., Katzir, N., … Monforte, A. J. (2005). Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theoretical and Applied Genetics, 110(5), 802-811. doi:10.1007/s00122-004-1814-6 | es_ES |
dc.description.references | Fernandez-Silva, I., Eduardo, I., Blanca, J., Esteras, C., Picó, B., Nuez, F., … Monforte, A. J. (2008). Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theoretical and Applied Genetics, 118(1), 139-150. doi:10.1007/s00122-008-0883-3 | es_ES |
dc.description.references | Deleu, W., Esteras, C., Roig, C., González-To, M., Fernández-Silva, I., Gonzalez-Ibeas, D., … Garcia-Mas, J. (2009). A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biology, 9(1), 90. doi:10.1186/1471-2229-9-90 | es_ES |
dc.description.references | Harel-Beja, R., Tzuri, G., Portnoy, V., Lotan-Pompan, M., Lev, S., Cohen, S., … Katzir, N. (2010). A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics, 121(3), 511-533. doi:10.1007/s00122-010-1327-4 | es_ES |
dc.description.references | González, V. M., Garcia-Mas, J., Arús, P., & Puigdomènech, P. (2010). Generation of a BAC-based physical map of the melon genome. BMC Genomics, 11(1), 339. doi:10.1186/1471-2164-11-339 | es_ES |
dc.description.references | Nieto, C., Piron, F., Dalmais, M., Marco, C. F., Moriones, E., Gómez-Guillamón, M. L., … Bendahmane, A. (2007). EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biology, 7(1), 34. doi:10.1186/1471-2229-7-34 | es_ES |
dc.description.references | Dahmani-Mardas, F., Troadec, C., Boualem, A., Lévêque, S., Alsadon, A. A., Aldoss, A. A., … Bendahmane, A. (2010). Engineering Melon Plants with Improved Fruit Shelf Life Using the TILLING Approach. PLoS ONE, 5(12), e15776. doi:10.1371/journal.pone.0015776 | es_ES |
dc.description.references | González, M., Xu, M., Esteras, C., Roig, C., Monforte, A. J., Troadec, C., … Picó, B. (2011). Towards a TILLING platform for functional genomics in Piel de Sapo melons. BMC Research Notes, 4(1). doi:10.1186/1756-0500-4-289 | es_ES |
dc.description.references | Gonzalez-Ibeas, D., Blanca, J., Roig, C., González-To, M., Picó, B., Truniger, V., … Aranda, M. A. (2007). MELOGEN: an EST database for melon functional genomics. BMC Genomics, 8(1), 306. doi:10.1186/1471-2164-8-306 | es_ES |
dc.description.references | Clepet, C., Joobeur, T., Zheng, Y., Jublot, D., Huang, M., Truniger, V., … Fei, Z. (2011). Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-252 | es_ES |
dc.description.references | Mascarell-Creus, A., Cañizares, J., Vilarrasa-Blasi, J., Mora-García, S., Blanca, J., Gonzalez-Ibeas, D., … Caño-Delgado, A. I. (2009). An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics, 10(1), 467. doi:10.1186/1471-2164-10-467 | es_ES |
dc.description.references | Reddy, V. S. (2003). Plant Molecular Biology, 52(1), 143-159. doi:10.1023/a:1023993713849 | es_ES |
dc.description.references | Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. The Plant Cell, 23(6), 2010-2032. doi:10.1105/tpc.111.084988 | es_ES |
dc.description.references | Tena, G., Boudsocq, M., & Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Current Opinion in Plant Biology, 14(5), 519-529. doi:10.1016/j.pbi.2011.05.006 | es_ES |
dc.description.references | Eulgem, T., & Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10(4), 366-371. doi:10.1016/j.pbi.2007.04.020 | es_ES |
dc.description.references | Li, J., Brader, G., Kariola, T., & Tapio Palva, E. (2006). WRKY70 modulates the selection of signaling pathways in plant defense. The Plant Journal, 46(3), 477-491. doi:10.1111/j.1365-313x.2006.02712.x | es_ES |
dc.description.references | Li, J., Brader, G., & Palva, E. T. (2004). The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell, 16(2), 319-331. doi:10.1105/tpc.016980 | es_ES |
dc.description.references | Pauwels, L., & Goossens, A. (2011). The JAZ Proteins: A Crucial Interface in the Jasmonate Signaling Cascade. The Plant Cell, 23(9), 3089-3100. doi:10.1105/tpc.111.089300 | es_ES |
dc.description.references | Liu, F., Jiang, H., Ye, S., Chen, W.-P., Liang, W., Xu, Y., … Li, C. (2010). The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Research, 20(5), 539-552. doi:10.1038/cr.2010.36 | es_ES |
dc.description.references | Sestili, S., Polverari, A., Luongo, L., Ferrarini, A., Scotton, M., Hussain, J., … Belisario, A. (2011). Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-122 | es_ES |
dc.description.references | Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J.-L., … Schulze-Lefert, P. (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425(6961), 973-977. doi:10.1038/nature02076 | es_ES |
dc.description.references | Schulze-Lefert, P. (2004). Knocking on the heaven’s wall: pathogenesis of and resistance to biotrophic fungi at the cell wall. Current Opinion in Plant Biology, 7(4), 377-383. doi:10.1016/j.pbi.2004.05.004 | es_ES |
dc.description.references | Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., … Schulze-Lefert, P. (1997). The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell, 88(5), 695-705. doi:10.1016/s0092-8674(00)81912-1 | es_ES |
dc.description.references | Consonni, C., Humphry, M. E., Hartmann, H. A., Livaja, M., Durner, J., Westphal, L., … Panstruga, R. (2006). Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38(6), 716-720. doi:10.1038/ng1806 | es_ES |
dc.description.references | HUMPHRY, M., REINSTÄDLER, A., IVANOV, S., BISSELING, T., & PANSTRUGA, R. (2011). Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Molecular Plant Pathology, 12(9), 866-878. doi:10.1111/j.1364-3703.2011.00718.x | es_ES |
dc.description.references | Humphry, M., Bednarek, P., Kemmerling, B., Koh, S., Stein, M., Gobel, U., … Panstruga, R. (2010). A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proceedings of the National Academy of Sciences, 107(50), 21896-21901. doi:10.1073/pnas.1003619107 | es_ES |
dc.description.references | Chen, Z., Noir, S., Kwaaitaal, M., Hartmann, H. A., Wu, M.-J., Mudgil, Y., … Jones, A. M. (2009). Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in Arabidopsis Root Thigmomorphogenesis. The Plant Cell, 21(7), 1972-1991. doi:10.1105/tpc.108.062653 | es_ES |
dc.description.references | Cheng, H., Kun, W., Liu, D., Su, Y., & He, Q. (2011). Molecular cloning and expression analysis of CmMlo1 in melon. Molecular Biology Reports, 39(2), 1903-1907. doi:10.1007/s11033-011-0936-6 | es_ES |
dc.description.references | Guo, Y.-H., Yu, Y.-P., Wang, D., Wu, C.-A., Yang, G.-D., Huang, J.-G., & Zheng, C.-C. (2009). GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 183(1), 62-75. doi:10.1111/j.1469-8137.2009.02838.x | es_ES |
dc.description.references | Schlink, K. (2009). Down-regulation of defense genes and resource allocation into infected roots as factors for compatibility between Fagus sylvatica and Phytophthora citricola. Functional & Integrative Genomics, 10(2), 253-264. doi:10.1007/s10142-009-0143-x | es_ES |
dc.description.references | Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109 | es_ES |
dc.description.references | Bolstad, B. M., Irizarry, R. ., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2), 185-193. doi:10.1093/bioinformatics/19.2.185 | es_ES |
dc.description.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 | es_ES |